Изменить стиль страницы

Трещина гибельна лишь для одной или нескольких полос скольжения. Системы, содержащие десятки и сотни полос, ее не боятся и способны остановить. Особенно устойчивы пачки, состоящие из пересекающихся полос скольжения. Здесь образуются настолько мощные поля сжимающих напряжений, что даже закритическая трещина часто не в состоянии их преодолеть.

В 1934 году советские физики Н. А. Бриллиантов и И. В. Обреимов обнаружили в кристаллах ЫаС1 области с очень большим разворотом кристаллической решетки и назвали их иррациональными двойниками. Вокруг этого термина разгорелась дискуссия, потому что выяснилось: с двойникованием эти дефекты не имели ничего общего. В. Л. Инденбом и А. А. Урусовская доказали, что «двойники» Бриллиантова-Обреимова связаны с пластической деформацией. Дислокационные процессы лежат в корне этого дефекта. Выяснилось, что из-за неоднородности напряженного состояния поперечное сечение кристалла деформировалось неодинаково. В результате множественных сдвигов образовался взаимный разворот смежных областей кристалла на углы в несколько градусов. Возникающая при этом дислокационная структура в некотором отношении подобна структуре, образующейся при одновременном сдвиге по различным пересекающимся плоскостям скольжения. И опыты, и расчеты показали, что вокруг и внутри полосы Бриллиантова-Обреимова существуют весьма мощные поля сжимающих напряжений. Мы уже знаем, что это дает надежду на тормозящие свойства дефекта. Интересна и такая деталь. Полоса «умудряется» тормозить трещину не только перед собой, но (в случае прорыва) и за собой: что-то вроде приема древних греческих воинов – лечь на землю и, прикрываясь щитами, пропустить вражескую конницу. А затем ударить ей в тыл. Физический же смысл

этого явления здесь понятен. Полоса Бриллиантова-Обреимова создает сжимающие напряжения как впереди себя, так и позади. Неудивительно поэтому, что полосы эти почти не имеют себе равных по влиянию на трещину. Если одна из них задерживает быструю трещину на 20- 30 мкс, то две-три останавливают разрушение при любых скоростях его распространения. Говоря о дефектах, способных остановить раскол, нельзя не упомянуть так называемый сброс. Термин этот геологический и означает он смещение одной части поверхности земли по отношению к другой. Причем смещение идет по высоте, и по простиранию, то есть вдоль поверхности. Металло-и кристаллофизики переняли этот термин и придали ему следующий смысл: плоскости скольжения кристалла должны превратиться в плавно изгибающуюся ступеньку.

Как же осуществить это на практике? Очень просто. Пусть на одной половине плоскости скольжения скопятся дислокации одного знака. Тогда плоскость изогнется выпуклостью в сторону «торчащих» экстраплоскостей. А на второй половине плоскости скольжения пусть столпятся дислокации противоположного знака. Очевидно, там кривизна будет противоположной. Так образовались две полочки сброса. Теперь остается соединить их наклонной плоскостью без дислокаций и сброс «готов». Размеры сбросов в кристаллах типа цинка исчисляются миллиметрами. В обычной стали они намного меньше – измеряются десятками и сотнями микрон. Углы разворота материала в полосах сброса могут быть довольно значительными и достигать 30-40°. Плотность дислокаций в сбросе очень велика – до 10 млрд. на 1 см2.

Как же взаимодействует такой 5-образный сброс с трещиной? По-вражески. Еще на далеких подступах он задерживает трещину, «выставляя» против нее поля сжимающих напряжений. Эти же поля действуют и в сердцевине сброса. Из-за их чрезвычайной сложности трещина, проникшая в ядро сброса, движется ступеньками, распадается на мелкие трещинки. Часто она останавливается и создает перед собой вторичные дочерние трещины. Потом, объединяясь с ними, проскакивает вперед и так далее. Словом, это не развернутое шествие, а тяжелая работа, требующая большого запаса упругой энергии и времени. Итак, сброс – это серьезное препятствие на пути трещин – и медленной и быстрой.

Пора подвести итог. Что же общего во влиянии на

разрушение со стороны отдельных дислокаций, полос скольжения, межзеренных сочленений, полос Бриллиан-това-Обреимова и сброса? Ведь дело не в отдельных, может быть иногда и случайных фактах, событиях, результатах экспериментально. Важно ответить на вопрос: в чем их корень? Корнем этим являются дислокация и ее упругое поле. Причем не растягивающая и сдвигающая его компоненты, а только поле сжатия. Именно оно в первую очередь и сражается с трещиной. Немалую роль играет и сама линия винтовой дислокации.

Следовательно, первые «бойцы», встающие на пути трещины и способные оказать ей сопротивление, – это дефекты кристаллической решетки. Поэтому металл с высоким сопротивлением разрушению должен содержать определенный набор этих неправильностей, расположенных к тому же определенным образом.

Читатель может задать каверзный вопрос: а как же быть с носителями предельной прочности – усами? Или с монолитными монокристаллами, начисто лишенными дислокаций?

Боюсь, что ответ будет неутешительным. Образование в таких материалах дислокации или зародышевой трещины затруднительно. Но что касается роста в них уже существующей трещины… Он пойдет очень быстро и легко. Практически разрушение бездислокационных монокристаллов, уж если оно началось, протекает как у весьма хрупкого тела. Это неудивительно, потому что такой амортизатор, как пластическая деформация, отсутствует. Вот уж действительно, в поисках высокого сопротивления растущей трещине нам следует уподобиться персонажу сатирика Ф. Кривина – Жабоногу:

Каждый ищет, где лучше, а Жабоног ищет, где хуже. Дайте ему соленую воду, дайте ему самую холодную воду или даже горячую воду, и это как раз ему подойдет.

Потому что все ищут, где лучше, а когда все ищут, где лучше, тогда там, где лучше, становится хуже всего. Чтобы найти, где лучше, надо искать, где хуже, – он это понимает, мудрый, опытный Жабоног»1.

Вот почему в изобретении способов высокого сопротивления, которые можно было бы противопоставить существующей и растущей трещине, нельзя ссылаться на традиционные бездислокационные материалы с прочно-

1 Кривин Ф. Самбо. Туда, где хуже//Крокоднл. 1974. № 22. С. 14.

стью, близкой к теоретически достижимой. Ибо это было бы решением только одной очень важной, но частной задачи – сдерживания зарождения первичной микротрещины. Но если трещина каким-то образом уже появилась, то теоретическая сверхпрочность мало поможет в борьбе. Ведь концентрация напряжений в вершине такой трещины при отсутствии пластичности легко достигает значений теоретической прочности. Поэтому такая трещина и распространяться будет легко. Чтобы справиться с ней, нужны совершенно иные качества кристалла, в частности необходимы дефекты. В этом несовместимом противоречии прекрасного и ущербного, совершенства кристалла, с одной стороны, и его одновременного несовершенства – с другой, и заключается одна из проблем современного конструирования металлов и сплавов.

И РАЗРУШАЯ, МОЖНО СОЗДАВАТЬ

И он дерзнул на все – вплоть до небес,

Но разрушенье – жажда созиданья.

И, разрушая, жаждал он чудес -

Божественный гармонии Созданья.

И. Бунин

Мы уже с вами, читатель, обсуждали, как быть с разрушением, которое нужно остановить. Речь шла о том, чтобы прежде всего обнаружить его с помощью чувствительных приборов, использующих «шумливость» трещины, например акустичесикх датчиков, способных воспринимать ее «пение» в акустическом диапазоне электрических или магнитных устройств, рассчитанных на определение электромагнитного излучения раскола и многих других. Полученные сигналы обрабатывались вычислительными устройствами и подавали команду на взрывы микрозарядов. Возникающие при этом упругие волны обрушивались на устье трещины и тормозили или разворачивали ее. Картина идеальная, но к сожалению, имеющая по меньшей мере один крупный недостаток. Дело в том, что появление трещины, даже на довольно ранних стадиях разрушения, обнаружить можно; но вот точно определить, где она находится и куда движется, совсем не просто.