Изменить стиль страницы

4. В идеальной кристаллической решетке при температуре, равной нулю, электроны в металле движутся без всякого сопротивления. Последнее определяется рассеянием электронов на дефектах (скажем, примесях — атом золота, замещающий атом меди, и т.п.) и на тепловых колебаниях атомов — фононах. С ростом температуры сопротивление металла, в норме, растет, так как растет амплитуда атомных колебаний, на которых рассеиваются электроны.

На самом деле (и это было известно экспериментально с начала ХХ в.) сопротивление некоторых (даже большинства) металлов при достаточно низких температурах обращается в ноль. Это явление сверхпроводимости, куда более известное, чем «эффект Кондо», но, с теоретической точки зрения, пожалуй, более простое.

В экспериментах, выполненных в 1930-х годах, обнаружилось, что сопротивление благородных металлов (медь, золото, серебро — они не сверхпроводящие) при сильном понижении температуры не исчезает, как при сверхпроводимости, и даже не уменьшается, как предписывали стандартные теории (меньше фоно-нов — меньше источников рассеяния), а, наоборот, растет. По этому поводу выдвигались самые фантастические идеи, вплоть до утверждения о некоем непонятном законе природы, в силу которого, если сопротивление при нулевой температуре не обращается в ноль (сверхпроводимость), оно должно обращаться в бесконечность. Все это оказалось ерундой. Выяснилось, что сопротивление всегда растет на небольшую величину. Более того, было показано, что эффект зависит от чистоты образца и, скорее всего, не является внутренним свойством металлов, а зависит — от примесей. Тут надо сказать, что большинство теоретиков (не говорю о белоручках из фундаментальной физики, говорю о скромных рабочих лошадках из конденсированного состояния) на дух не переносят «грязи» и дефектов и, если явление связано с ними, теряют к нему всякий интерес.

В 1964 г. японский теоретик Юн Кондо рассмотрел задачу о рассеянии электронов в металле на магнитной примеси, т.е. на примеси с нескомпенсированным спином и магнитным моментом (например, железо, кобальт или марганец в золоте, серебре или меди). Взаимодействие электронного спина со спином примеси он считал малым (такое взаимодействие — оно называется s-d обменным — было введено в науку в 1946 г. моим учителем Сергеем Вонсовским). Кондо поэтому использовал, как обычно, теорию возмущений (в квантовой механике она называется борновским приближением).

Было уже известно, что в ведущем порядке (втором, так как первый зануляется) ничего интересного не происходит — обычная добавка к постоянному (не зависящему от температуры) электросопротивлению, как для простых, немагнитных примесей. Кондо рассмотрел следующий, третий порядок и обнаружил, что соответствующая поправка логарифмически зависит от температуры, а при температуре, стремящейся к нулю, формально стремится к бесконечности, что означает неприменимость теории возмущений. Температура, при которой это случается (поправка сравнивается с ведущим членом разложения), получила название температуры Кондо.

Работа Кондо объяснила (после 30 с лишним лет полного непонимания) рост сопротивления с понижением температуры. Осталось, однако, выяснить, каков все-таки физический механизм, ответственный за этот рост, и что делать при температурах ниже кондовской, когда теория возмущений не работает.

Следующий важный шаг был сделан почти сразу, независимо — советским (тогда) теоретиком Алексеем Абрикосовым и американцем Гарри Сулом. Воспользовавшись известным из квантовой теории поля методом суммирования расходимостей, они показали, что при температуре Кондо возникает резонанс в электронном рассеянии — электрон как бы эффективно «прилипает» к примеси. Однако использованный ими метод был необоснован (ниоткуда не следовало, что отброшенные члены менее важны, чем те, что учитывались при суммировании), не описывал корректно, как скоро выяснилось, поведение при низких температурах и не прояснял физический смысл происходящего. В частности, было совершенно непонятно, что происходит со спином примеси.

Газета Троицкий Вариант  51 img_30.png
Визуализация орбитального Кондо-резонанса на поверхности хрома с помощью СТМ. O.Yu. Kolesnichenko, R. de Kort, M.I. Katsnelson, A.I. Lichtenstein, and H. van Kempen, Nature 415, 507 (2002).

Что происходит, когда электрон с энергией, равной энергии Ферми, подлетает к магнитной примеси? Допустим, у него спин направлен вверх, а у примеси — вниз. В результате s-d обменного взаимодействия оба спина перевернулись (при сохранении, понятно, полного спина). Но изменение состояния примеси в силу катастрофы ортогональности означает полную перестройку состояния всей остальной многоэлектронной системы! Это значит, что, несмотря на то, что электроны считаются невзаимодействующими, задача существенно многочастичная. Более того, она существенно затрагивает все электроны. Число Авогадро электронов и все важны. И как такое решать?

Если задача многочастичная и не решается точно, в современной теорфизике есть в общем только две стратегии: среднее поле и ренорм-группа (группа перенормировок — в действительности полугруппа, обратные операции обычно не определены). Среднее поле — это когда эффективное число степеней свободы, реально важных для поведения системы, конечно. Здесь не тот случай. Просто выбросить бесконечно много степеней свободы не удается, они все важны. Но, как понял Андерсон (с соавторами), можно рассмотреть последовательность выбрасываний части степеней свободы. Эта последовательность обладает полугрупповыми свойствами, и можно сказать (они смогли это только качественно), к какому состоянию мы придем после бесконечного числа преобразований. В контексте проблемы Кондо оказалось, что магнитная примесь становится немагнитной: её спин в точности компенсируется «шубой» налипших (вспомним о сул-абрикосовском резонансе!) электронов. Шел 1970 год.

Еще через четыре года Кеннет Вильсон сделал из ренормгруп-пы количественный метод и нашел «численно точное» решение проблемы Кондо. Это было одно из первых применений «по делу» компьютеров в теорфизике. В этом смысле успех работы Вильсона имел колоссальные последствия. В параллель Вильсон применил похожую программу к теории «критического поведения», решив одну из самых сложных и самых важных проблем статистической физики, но это другая история. Я хочу подчеркнуть просто, что ноги тут проросли из малосущественной, на первый взгляд, особенности сопротивления некоторых металлов за счет «грязи».

В 1980 г. Павел Вигман в СССР и Натан Андрей в США обнаружили, что проблема Кондо (её некий упрощенный вариант, причем упрощения не портят физику задачи) является точно решаемой. То, что они сделали, было модификацией способа, которым Ханс Бете нашел в 1930-х годах точное решение для задачи об одномерной цепочке взаимодействующих спинов (это называется «анзац Бете»). Надо сказать, однако, что во многих случаях (например, когда нас интересуют спектральные характеристики) факт существования точного решения не слишком помогает, и практически удобнее все равно использовать численные подходы в духе Вильсона. Для термодинамических свойств существование точного решения просто закрывает проблему, во всяком случае если речь идет об одиночной магнитной примеси.

Тем временем у проблемы Кон-до обнаружились три новые области приложений, гораздо более важные, чем исходная задача о сопротивлении металлов с магнитными примесями.

Во-первых, в 1980-е годы были открыты и сразу стали чрезвычайно популярными так называемые «системы с тяжелыми фермионами». Дело тут вот в чем. Подавляющее большинство свойств металла определяется не всеми электронами, а только теми, энергия которыз близка к энергии Ферми. В частности, очень важна их эффективная масса, которая отличается от массы свободных электронов: во-первых, из-за воздействия кристаллического потенциала, а во-вторых, из-за эффектов взаимодействия с другими электронами и с фононами — электрон как бы «одевается» шубой из других электронов и из атомных смещений. Как правило, изменение эффективной массы по этим причинам — разы. В системах с тяжелыми фермионами (обычно это соединения, содержащие церий, уран, реже — иттербий или плутоний) перенормировка эффективной массы достигает значений порядка нескольких тысяч. Общепринятая интерпретация — это «решетки Кондо», где электроны утяжеляются за счет прилипания к магнитным моментам атомов церия или урана.