Изменить стиль страницы

То, что основной характеристикой, от которой зависит фрагментация первоначального облака, является плотность вещества, установлено. Несмотря на то что массы и размеры галактик отличаются в сотни и тысячи раз, их плотности одинаковы. Это говорит о том, что галактики образовались тогда, когда плотность вещества в первоначальном облаке достигла определенной критической величины.

Если радиус облака уменьшится в два раза, плотность вещества увеличится в 8 раз (23= 8). Первоначальное облако, из которого в будущем образуется Галактика, состояло из водорода. Когда оно распалось на отдельные облака, то они при гравитационном сжатии стали превращаться в звезды. Образование звезд происходило следующим образом.

Облака — протозвезды сжимались под действием сил гравитации. На определенном этапе сжатия облака его плотность увеличивается настолько, что оно перестает выпускать наружу инфракрасное излучение вещества облака. Это приводит к очень быстрому росту температуры в центральных областях облака. Образуется большой перепад температуры между центральной частью протозвезды и внешними слоями. Перепад давления вызывает процессы конвекции, которые стремятся выровнять температуру во всем облаке — протозвезде. В наружных слоях протозвезды температура достигает примерно 2500 К. Протозвезда продолжает сжиматься, ее размеры уменьшаются. Температура в ее недрах продолжает увеличиваться. В какой-то момент она достигает десяти миллионов градусов. Тогда «включаются» термоядерные реакции с участием ядер водорода (протон-протонные реакции), протозвезда перестает сжиматься. Протозвезда превращается в звезду.

Энергия звезды, благодаря которой поддерживается высокая температура в ее недрах, черпается из термоядерного синтеза. В этих термоядерных реакциях четыре протона путем разных преобразований соединяются так, что образуют ядро гелия (альфа-частицу, состоящую из двух протонов и двух нейтронов). При превращении одних частиц в другие часть массы превращается в энергию. Можно рассчитать, какое количество энергии должно выделиться в реакциях образования альфа-частиц из протонов. Это можно сделать так. Масса одного протона равна 1,008 атомной единицы. Масса альфа-частицы равна 4,0039 атомной единицы. При превращении четырех протонов в одну альфа-частицу «исчезает» масса величиной 0,007 атомной единицы. Точнее, она не исчезает, а превращается в энергию, ядерную энергию. Можно оценить запасы ядерной энергии звезды.

Эволюция звезды определяется, главным образом, ее массой. Естественно, чем больше масса звезды, тем больше энергия, которая может выделиться внутри звезды в процессе термоядерных реакций. Другими словами, тем больше горючего содержится внутри такой звезды. Казалось бы, такая звезда должна жить (светиться) дольше. Но это не так. Чем массивнее звезда, тем больше она излучает энергии в космическое пространство. Так, если массу звезды увеличить в три раза, то ее расход энергии на излучение (светимость) увеличится в девять раз! Поэтому с увеличением массы звезды продолжительность ее жизни резко уменьшается. Так, например, горючего для ядерного реактора внутри Солнца хватит еще на десятки миллиардов лет. Около пяти миллиардов лет это горючее уже расходуется. Но, если масса звезды в 50 раз превышает массу Солнца, то ее горючего хватит всего на несколько миллионов лет!

Когда в процессе термоядерных реакций в ядре звезды израсходуется весь водород (он превращается в гелий), то термоядерные реакции превращения водорода в гелий начинают идти в слое вокруг ядра. Светимость звезды на этом этапе увеличивается. Звезда как будто разбухает. Но температура поверхностных слоев звезды уменьшается, поскольку размеры ее увеличились, поэтому она начинает светиться не голубым, а красным цветом. Такую звезду называют красным гигантом. Дальше звезда эволюционирует следующим образом. Поскольку в ядре не идут термоядерные реакции и не выделяется тепло, она постепенно сжимается под действием сил гравитации. В результате сжатия ядра увеличивается его температура. Она достигает 100–150 миллионов градусов. При столь высокой температуре гелий становится источником тепла: идут термоядерные реакции, в результате которых ядра гелия превращаются в ядра углерода. Давление внутри ядра звезды увеличивается, поэтому сжатие прекращается. Светимость звезды на этом этапе увеличивается, так как в нее вносит вклад и выделение энергии из ядра. В результате увеличивается и поверхностная температура звезды.

Но когда-то кончается и гелий. Причем значительно быстрее, чем кончился водород. Когда это происходит, звезда теряет свои наружные слои. Они расширяются и отделяются от ядра звезды. Эти слои впоследствии наблюдаются как планетарная туманность. Судьба ядра звезды после этого зависит от ее массы. Если масса звезды меньше 1,2 массы Солнца, то вещество звезды под действием гравитационного сжатия уплотняется таким образом, что его плотность достигает 10 тысяч тонн в кубическом сантиметре. При такой огромной плотности атомы разрушаются. После этого сжатие звезды прекращается, так как ему начинает противодействовать сила упругости образованного очень плотного газа. Образованная таким путем звезда (ее называют «мертвой») является белым карликом. Таким образом, до того, как звезда превратится в белого карлика, она на некоторое время становится красным гигантом. Затем белый карлик в течение нескольких миллиардов лет остывает и превращается в черного карлика, то есть тело не излучающее, а поэтому и невидимое. И.С. Шкловский назвал его «трупом» звезды. Если масса первоначальной зашлакованной звезды превышает критическую величину в 1,2 массы Солнца, то силы упругости сверхплотного (вырожденного) газа не в состоянии справиться с силами гравитационного сжатия.

Если масса звезды не превышает 10 масс Солнца (но больше 1,2 массы Солнца), то события развиваются следующим образом. Чрезмерное сжатие звезды приводит к сильному увеличению ее температуры. Когда температура превысит пять миллиардов градусов, начинают играть важную роль реакции, в результате которых образуется нейтрино. Поскольку нейтрино не обладает зарядом и массой покоя, оно практически беспрепятственно проникает через любые вещества, в том числе и через вещество звезды. Энергия, которую создает внутри звезды сильное гравитационное сжатие, этими частицами выносится наружу. Они выносят больше энергии, нежели ее расходует звезда на свое свечение в видимом диапазоне. Так как энергия изнутри звезды выносится наружу нейтрино, то звезда получает возможность сжиматься быстрее. Сжатие удваивается каждую секунду. Остановить это сжатие уже нельзя. Но когда огромная звезда ужимается до размеров сферы с радиусом в 10 километров и плотность вещества звезды достигает миллиарда тонн в кубическом сантиметре, вступают в игру новые силы, возникающие при деформации атомных ядер. Ядра распадаются на протоны и нейтроны. Но протоны, захватив на каждый протон по одному электрону, превращаются в нейтроны (при этой реакции также выделяется нейтрино). С этого времени вещество звезды состоит преимущественно из нейтронов. Остальные элементарные частицы представляют собой просто примеси в пренебрежимо малых количествах. Для этого процесса введен термин: нейтронизация вещества звезды. При этом образуется нейтронное вещество со свойствами несжимаемой жидкости. Плотность его равна плотности вещества внутри атомного ядра. Но нейтроны сцеплены между собой не ядерными силами (как внутри ядра), а силами гравитации. Поскольку образованная таким путем нейтронная жидкость является несжимаемой, то дальнейшее сжатие звезды прекращается. Силы гравитационного сжатия уравновешиваются силами упругости нейтронной жидкости. Это успешно происходит в том случае, если масса звезды не превышает вдвое массу Солнца. В том случае, если масса звезды превышает двойную массу Солнца, звезда может остановить свое сжатие только в том случае, если она каким-либо образом сбросит с себя лишнюю массу в форме взрыва.

Взрыв происходит в образовавшемся ядре звезды, поскольку оно является неустойчивым. При взрыве выделяется энергия и образуется ударная волна, которая, распространяясь наружу, выбрасывает из звезды наружные слои. Они отделяются от звезды и образуют газовое облако, которое по инерции продолжает быстро расширяться. Оптическая яркость звезды после взрыва увеличивается в миллион раз. Это настолько заметное явление на небе, что его можно наблюдать даже невооруженным глазом. Это явление было названо вспышкой Сверхновой звезды. Имеются и новые звезды, яркость которых значительно меньше. Физическая природа новых звезд иная. Какова судьба звезды, масса которой больше 10 масс Солнца?