Изменить стиль страницы

Этот дисбаланс со временем увеличивается и достигает в конечном итоге критического уровня. Происходит колоссальный взрыв, часть вещества звезды выбрасывается в окружающее её пространство. При этом уменьшается мерность этого окружающего звезду пространства и формируется канал, по которому перетекает такое количество материи, которое звезда в состоянии через себя пропустить (см. Рис. 161). Астрономы называют этот взрыв — взрывом сверхновой звезды.

Последнее обращение к человечеству _161.jpg

Рис. 161 — взрыв сверхновой звезды, при котором происходит деформация окружающего её пространства и выброс огромных масс скопившейся материи. При взрыве сверхновой происходит выброс поверхностных слоёв звезды, которые состоят в основном из лёгких элементов. Выброс вещества звезды приводит к зарождению планет в зонах деформации пространства, возникшего в момент взрыва. Причём, более тяжёлые элементы «выпадают» ближе к самой звезде. В результате этого ближние планеты в большей степени состоят из тяжёлых элементов, в то время, как удалённые планеты — в основном из лёгких. Солнечная система — прекрасный пример этому.

λ6 — мерность пространства-вселенной, образованного слиянием шести форм материй.

λ7 — мерность пространства-вселенной, образованного слиянием семи форм материй.

λ8 — мерность пространства-вселенной, образованного слиянием восьми форм материй.

При этом взрыве звезда теряет как свои верхние наиболее лёгкие слои, состоящие из водорода, гелия и других простых атомов, так и внутренние слои, содержащие тяжёлые атомы, только в значительно меньшей степени. При взрыве происходит деформация пространства и на относительно больших расстояниях (несколько астрономических единиц). И если ядро атома вызывает максимальное искривление (деформацию) пространства вблизи себя, то, по мере удаления от ядра, эта деформация становится всё меньше и меньше. При взрыве сверхновой звезды деформация пространства проявляется сильнее при удалении от этой звезды (см. Рис. 162).

Последнее обращение к человечеству _162.jpg

Рис. 162распределение материи, выброшенной взрывом сверхновой звезды по зонам деформации мерности вокруг неё.

λ6 — мерность пространства-вселенной, образованного слиянием шести форм материй.

λ7 — мерность пространства-вселенной, образованного слиянием семи форм материй.

λ8 — мерность пространства-вселенной, образованного слиянием восьми форм материй.

Таким образом, выброшенные при взрыве верхние слои звезды образуют газопылевую туманность, из которой со временем образуются планеты. Причём, чем ближе к звезде возникает планета, тем больше её плотность и больший процент тяжёлых атомов в её составе. Чем дальше от звезды образуется планета, тем меньше её плотность и тем больший процент «лёгких» атомов её образуют: водород, кислород, углерод, вода и т. д. (см. Рис. 163 и Рис. 164).

Последнее обращение к человечеству _163.jpg

Рис. 163образование планет из материи, выброшенной взрывом сверхновой в зонах деформации мерности пространства.

λ6 — мерность пространства-вселенной, образованного слиянием шести форм материй.

λ7 — мерность пространства-вселенной, образованного слиянием семи форм материй.

λ8 — мерность пространства-вселенной, образованного слиянием восьми форм материй.

Последнее обращение к человечеству _164.jpg

Рис. 164гибель планеты ФАЭТОН и образование астероидного пояса солнечной системы.

λ6 — мерность пространства-вселенной, образованного слиянием шести форм материй.

λ7 — мерность пространства-вселенной, образованного слиянием семи форм материй.

λ8 — мерность пространства-вселенной, образованного слиянием восьми форм материй.

я) Суперпространства

Теперь вернёмся к системе, которую образуют между собой группа пространств-вселенных с разной мерностью.

Так как мерность матричного пространства, в котором они образуются неоднородна в разных направлениях, то возникают условия для постепенного вырождения мерности каждого из пространств-вселенных, различное в разных направлениях. Возникает квантование π-мерного матричного пространства.

В результате этого пространства-вселенные образуют замкнутую сбалансированную систему (см. Рис. 165), в которой одно пространство-вселенная по мере уменьшения мерности (вырождения) переходит в другое пространство-вселенную. В зонах, где уменьшение мерности становится критическим для всех пространств-вселенных, они сливаются в одно целое! И имеют в этих зонах одинаковую мерность λ2 = 2,878950584…

Последнее обращение к человечеству _165.jpg

Рис. 165расположение пространств-вселенных друг относительно друга в нашей метавселенной.

1. границы метавселенной.

2. пространства-вселенные, образованные слиянием разного количества форм материй.

Нашу метавселенную формируют девять форм материй. Число перестановок (комбинаций) из них равно 459. Учитывая, что минимальное число взаимодействующих между собой форм материй должно быть не менее двух, эту цифру можно получить из формулы

ΣCmn = n!/m!(m-n) (11)

где:

n= 9; 2 ≤m≤9.

В то время, как в действительности нашу метавселенную образуют триста пространств-вселенных. Это значит, что существуют «незаполненные» зоны матричного пространства, что говорит о том, что процесс формирования нашей метавселенной не закончен, и что на структуру метавселенной могут оказывать влияние другие системы пространств. Наша метавселенная является лишь завершённой частью притом, очень маленькой частью, того, что называется Большим Космосом.

Перед тем, как перейти к следующей пространственной системе, хотелось бы отметить следующее: пространства-вселенные, образованные синтезом двух и трёх форм материй, имеют максимальную нестабильность, но в то же время большую активность структур, а пространства, образованные синтезом девяти форм материй, максимально устойчивы и максимально инерционны. Поэтому большинство «вакантных» мест — для пространств с мерностью λ2 и λ3…