Изменить стиль страницы

Many people in this country think of taste as something elusive, or even frivolous. It is neither. To drive design, a manager must be the most demanding user of a company's products. And if you have really good taste, you can, as Steve Jobs does, make satisfying you the kind of problem that good people like to work on.

Nasty Little Problems

It's pretty easy to say what kinds of problems are not interesting: those where instead of solving a few big, clear, problems, you have to solve a lot of nasty little ones. One of the worst kinds of projects is writing an interface to a piece of software that's full of bugs. Another is when you have to customize something for an individual client's complex and ill-defined needs. To hackers these kinds of projects are the death of a thousand cuts.

The distinguishing feature of nasty little problems is that you don't learn anything from them. Writing a compiler is interesting because it teaches you what a compiler is. But writing an interface to a buggy piece of software doesn't teach you anything, because the bugs are random. [3] So it's not just fastidiousness that makes good hackers avoid nasty little problems. It's more a question of self-preservation. Working on nasty little problems makes you stupid. Good hackers avoid it for the same reason models avoid cheeseburgers.

Of course some problems inherently have this character. And because of supply and demand, they pay especially well. So a company that found a way to get great hackers to work on tedious problems would be very successful. How would you do it?

One place this happens is in startups. At our startup we had Robert Morris working as a system administrator. That's like having the Rolling Stones play at a bar mitzvah. You can't hire that kind of talent. But people will do any amount of drudgery for companies of which they're the founders. [4]

Bigger companies solve the problem by partitioning the company. They get smart people to work for them by establishing a separate R&D department where employees don't have to work directly on customers' nasty little problems. [5] In this model, the research department functions like a mine. They produce new ideas; maybe the rest of the company will be able to use them.

You may not have to go to this extreme. Bottom-up programming suggests another way to partition the company: have the smart people work as toolmakers. If your company makes software to do x, have one group that builds tools for writing software of that type, and another that uses these tools to write the applications. This way you might be able to get smart people to write 99% of your code, but still keep them almost as insulated from users as they would be in a traditional research department. The toolmakers would have users, but they'd only be the company's own developers. [6]

If Microsoft used this approach, their software wouldn't be so full of security holes, because the less smart people writing the actual applications wouldn't be doing low-level stuff like allocating memory. Instead of writing Word directly in C, they'd be plugging together big Lego blocks of Word-language. (Duplo, I believe, is the technical term.)

Clumping

Along with interesting problems, what good hackers like is other good hackers. Great hackers tend to clump together-- sometimes spectacularly so, as at Xerox Parc. So you won't attract good hackers in linear proportion to how good an environment you create for them. The tendency to clump means it's more like the square of the environment. So it's winner take all. At any given time, there are only about ten or twenty places where hackers most want to work, and if you aren't one of them, you won't just have fewer great hackers, you'll have zero.

Having great hackers is not, by itself, enough to make a company successful. It works well for Google and ITA, which are two of the hot spots right now, but it didn't help Thinking Machines or Xerox. Sun had a good run for a while, but their business model is a down elevator. In that situation, even the best hackers can't save you.

I think, though, that all other things being equal, a company that can attract great hackers will have a huge advantage. There are people who would disagree with this. When we were making the rounds of venture capital firms in the 1990s, several told us that software companies didn't win by writing great software, but through brand, and dominating channels, and doing the right deals.

They really seemed to believe this, and I think I know why. I think what a lot of VCs are looking for, at least unconsciously, is the next Microsoft. And of course if Microsoft is your model, you shouldn't be looking for companies that hope to win by writing great software. But VCs are mistaken to look for the next Microsoft, because no startup can be the next Microsoft unless some other company is prepared to bend over at just the right moment and be the next IBM.

It's a mistake to use Microsoft as a model, because their whole culture derives from that one lucky break. Microsoft is a bad data point. If you throw them out, you find that good products do tend to win in the market. What VCs should be looking for is the next Apple, or the next Google.

I think Bill Gates knows this. What worries him about Google is not the power of their brand, but the fact that they have better hackers. [7]

Recognition

So who are the great hackers? How do you know when you meet one? That turns out to be very hard. Even hackers can't tell. I'm pretty sure now that my friend Trevor Blackwell is a great hacker. You may have read on Slashdot how he made his own Segway. The remarkable thing about this project was that he wrote all the software in one day (in Python, incidentally).

For Trevor, that's par for the course. But when I first met him, I thought he was a complete idiot. He was standing in Robert Morris's office babbling at him about something or other, and I remember standing behind him making frantic gestures at Robert to shoo this nut out of his office so we could go to lunch. Robert says he misjudged Trevor at first too. Apparently when Robert first met him, Trevor had just begun a new scheme that involved writing down everything about every aspect of his life on a stack of index cards, which he carried with him everywhere. He'd also just arrived from Canada, and had a strong Canadian accent and a mullet.

The problem is compounded by the fact that hackers, despite their reputation for social obliviousness, sometimes put a good deal of effort into seeming smart. When I was in grad school I used to hang around the MIT AI Lab occasionally. It was kind of intimidating at first. Everyone there spoke so fast. But after a while I learned the trick of speaking fast. You don't have to think any faster; just use twice as many words to say everything.

With this amount of noise in the signal, it's hard to tell good hackers when you meet them. I can't tell, even now. You also can't tell from their resumes. It seems like the only way to judge a hacker is to work with him on something.

And this is the reason that high-tech areas only happen around universities. The active ingredient here is not so much the professors as the students. Startups grow up around universities because universities bring together promising young people and make them work on the same projects. The smart ones learn who the other smart ones are, and together they cook up new projects of their own.

Because you can't tell a great hacker except by working with him, hackers themselves can't tell how good they are. This is true to a degree in most fields. I've found that people who are great at something are not so much convinced of their own greatness as mystified at why everyone else seems so incompetent.