Рис. 8. Самолет "Ньюпор-17" -- виды спереди и сверху
На рис. 9 приведены поляра самолета "Ньюпор-17" и профиль его крыльев; как видно из рисунка, самолет имел тонкое крыло со значительной кривизной средней линии. Эффективное удлинение крыла около 5; по известной максимальной скорости и примерному значению коэффициента полезного действия винта была найдена эквивалентная вредная площадь F00,76 м, после чего оказалось возможным составить уравнение поляры:
Cх0,065 + 0,065Су2
В районе Сумах и на малых Су поляра "отваливает" от теоретической, как показано на рис. 9. Максимальное аэродинамическое качество получилось равным примерно 7,7. Затем по характеристике двигателя "Рон" (мощностью 110 л. с.) был подобран винт диаметром 2,45 м и шагом 2,75 м. Характеристики тяги и полезной мощности были определены обычными приемами, путем сопоставления коэффициентов мощности винта
с аналогичными коэффициентами для двигателя.
На рис. 10 приведены характеристики потребной и располагаемой мощностей, для высот полета 0, 2, 4 и 6 км. При расчете потребной мощности на малой высоте и малой скорости была учтена вертикальная составляющая тяги, и это дало уменьшение минимальной скорости примерно на 12%.
Рис. 9. Профиль крыла и поляра самолета "Ньюпор-17"
По пересечениям потребных и располагаемых мощностей были определены максимальные скорости (рис. 11). По максимальным избыточным мощностям DNNр-- Nп были определены максимальные вертикальные скорости и подсчитано время подъема на разные высоты.
Для расчета виражей был построен вспомогательный график (рис. 12) зависимости потребной Qгор и располагаемой Р тяги от кинетической высоты hкV2/2g. Проведя на этом графике прямые из начала координат, получим режимы полета с максимальной перегрузкой; величина перегрузки равна отношению P/Qгop в точках пересечения луча с кривыми располагаемой и потребной тяги. Максимальная подъемная сила оказалась равной Ymах1360 кГ; по приближенному расчету мы получили величину 1320 кГ.
На рис. 13 даны характеристики маневренности самолета на малой высоте. Минимальный радиус виража оказался равным около 50 м и минимальное время совершения круга-- 10 сек. Был произведен также расчет виража для гипотетического случая, когда при больших Су поляра не "отваливает", а продолжает следовать закону Сх 0,065(1+ Су2).
Рис 10 График располагаемых мощностей двигательной группы и мощностей, потребных для горизонтального полета самолета "Ньюпор-17"
Полученные результаты показаны на рис. 12 и 13 пунктирной линией. Подобное продление поляры имело бы место при более широких крыльях. Как видно из рисунков, это дало бы незначительное увеличение перегрузки, но значительно уменьшило бы радиус и время виража (время виража снизилось бы до 8,1 сек, а радиус был бы равен 35 м). Следует указать, что если у самолета "Ньюпор" средняя ширина крыла (сумма ширины верхнего и нижнего крыльев) составляла около 1,9 м, то у английского самолета Сопвич "Кемел" она была равна 2,7 м. При взлете самолета "Ньюпор" среднее значение силы тяги составляло около 250 кГ, или 45% веса. Это довольно большая тяга, которая давала среднее ускорение, равное со 4 м/сек2; при отрыве на скорости, равной 20 м/сек, время разбега будет равно 5 сек и длина разбега -- 50 м. При скорости встречного ветра 5 м/сек длина разбега составляла всего 30 м.
Рис. 11 График скоростей и скороподъемности самолета "Ньюпор-17"
Рис. 12. График для расчета максимальной перегрузки самолета "Ньюпор-17"
Взлет самолета "Ньюпор" был очень эффектным -- после очень короткого разбега самолет почти сразу переходил на набор высоты под углом 16о-17о. Некоторые летчики после отрыва начинали выполнять спиральный набор высоты. При крене в 45о и скорости около 100 км/час самолет мог выполнять спираль с радиусом около 70 м, совершая один виток за 17 сек и набирая около 80 м высоты. Спиральный взлет был очень опасен, так как в случае остановки двигателя на малой высоте летчик не успевал перевести самолет на планирование и он обычно переходил в штопор.
Рис. 13 Характеристики маневренности самолета "Ньюпор-17" на малой высоте
Расчет расхода топлива в полете показал, что минимальный часовой расход составлял около 12 кг/час при скорости 100 км/час и около 25 кг/час на мощности, близкой к максимальной. При запасе топлива, равном около 60 кг, время полета с маневрированием составляло около 2 час. Максимальную дальность самолет имел при скорости 125 км/час, при километровом расходе 0,12 кг/км; при этих условиях максимальная дальность могла составить около 500 км.
Приведенные материалы могут дать известное представление о том, что представлял собой истребитель времен первой мировой войны.
При неработающем двигателе винт обычно останавливался и величина вредной площади становилась равной около 1,2 м, а аэродинамическое качество К6. При скорости 80-85 км/час скорость снижения была равна 4 м/сек; при спирали с креном в 45о и скорости 100 км/час радиус спирали был равен около 80 м, время витка -- 20 сек и снижение за один виток -- около 120 м.
Самолет И-5
Самолет "И-5" (рис. 14) был разработан группой конструкторов под руководством Н. Н. Поликарпова и Д. П. Григоровича в 1930 г. Это был типичный биплан с двигателем воздушного охлаждения, имеющим звездообразное расположение цилиндров. Вначале на каждом цилиндре был индивидуальный обтекатель, а затем был применен общий кольцевой обтекатель.
Рис 14 Схема истребителя "И-5"
Крылья самолета имели довольно толстый профиль с плоской нижней стороной. Казалось бы, ни по схеме, ни по мощности двигателя самолет не отличался от ранее построенных истребителей. Его достоинства определялись малым весом пустого самолета и большим значением перегрузки при маневре; хорошо были отработаны и его органы управления.
На рис. 15 даны поляры и профиль крыла самолетов "И-5" и "И-153". На рис. 16 даны графики скоростей по высотам и вертикальных скоростей для самолета "И-5".
Для расчета маневров самолета удобно применить такую последовательность. Для некоторой скорости V мы знаем максимальную силу тяги двигательной группы Р; при установившейся скорости полета или маневра эта тяга должна быть равна силе сопротивления; отсюда мы можем найти коэффициент сопротивления СxP/qS, а, пользуясь полярой или формулой для нее, по Сх, находим Су, и тогда величина подъемной силы будет:
Рис. 15. Профиль крыла и поляры самолетов истребителей "И-5" и "И-153"
Рис. 16. Характеристики скоростей и скороподъемности самолета "И-5"
Рис. 17. Характеристики тяги и максимальной подъемной силы самолета "И-5" для малой высоты
Произведя такие расчеты для ряда скоростей, мы сможем построить график подъемной силы по скорости (рис. 17); затем определим коэффициент перегрузки nу для желаемого значения веса самолета и найдем радиус виража и время совершения круга:
Величины ny, r, t наносим на график (рис. 18). Подобный расчет можно проделать и для другой высоты, взяв соответственно силу тяги и значение скоростного напора для этой высоты.
Самолет И-153
Как мы уже указывали, дальнейшим развитием самолета "И-5" явился самолет "И-15", который имел более мощный двигатель и несколько улучшенную аэродинамику. У самолета "И-153" кроме дальнейшего повышения мощности двигателя воздушного охлаждения была более существенно улучшена аэродинамика. Поэтому мы не будем приводить характеристики самолета "И-15", а прямо перейдем к самолету "И-153", у которого маневренные характеристики были наиболее высокими и который был последним из маневренных бипланов.
Оба самолета, "И-15" и "И-153", были сконструированы под руководством Н. Н. Поликарпова. Схема самолета "И-153" приведена на рис. 19, его поляра была приведена на рис. 15; она отличается от поляры самолета "И-5" только меньшим значением Сх и тем, что аэродинамическое качество повысилось до значения К11. Характеристика полезной мощности была построена для винта изменяемого шага при условии сохранения постоянного числа оборотов независимо от высоты и скорости полета.