Изменить стиль страницы

The Huntington's chorea gene is a particularly clear example of a lethal gene. There are lots of genes that are not in themselves lethal but nevertheless have effects that increase the probability of dying from some other cause and are called sublethal. Once again, their time of switching on may be influenced by modifier genes and therefore postponed or accelerated by natural selection. Medawar realized that the debilities of old age might represent an accumulation of lethal and sublethal genetic effects that had been pushed later and later in the life cycle and allowed to slip through the reproductive net into future generations simply because they were late-acting.

The twist that G. C. Williams, the doyen of modern American Darwinists, gave to the story in 1957 is an important one. It gets back to our point about economic trade-offs. To understand it, we need to throw in a couple of additional background facts. A gene usually has more than one effect, often on parts of the body that are superficially quite distinct. Not only is this “pleiotropy” a fact, it is also very much to be {130} expected, given that genes exert their effects on embryonic development and embryonic development is a complicated process. So, any new mutation is likely to have not just one effect but several. Though one of its effects may be beneficial, it is unlikely that more than one will be. This is simply because most mutational effects are bad. In addition to being a fact, this is to be expected in principle: if you start with a complicated working mechanism – like a radio, say – there are many more ways of making it worse than of making it better.

Whenever natural selection favors a gene because of its beneficial effect in youth – say, on sexual attractiveness in a young male – there is likely to be a downside: some particular disease in middle or old age, for example. Theoretically, the age effects could be the other way around but, following the Medawar logic, natural selection is hardly going to favor disease in the young because of a beneficial effect of the same gene in old age. Moreover, we can invoke the point about modifier genes again. Each of the several effects of a gene, its good and its bad effects, could have their switch-on times altered in subsequent evolution. According to the Medawar principle, the good effects would tend to be moved earlier in life, while the bad effects would tend to be postponed until later. Moreover, there will in some cases be a direct trade-off between early and late effects. This was implied in our discussion of salmon. If an animal has a finite quantity of resources to spend on, say, becoming physically strong and able to leap out of danger, any predilection to spend those resources early will be favored over a preference to spend them late. Late spenders are more likely to be already dead from other causes before they have a chance to {131} spend their resources. To put the general Medawar point in a sort of back-to-front version of the language we introduced in chapter 1, everybody is descended from an unbroken line of ancestors all of whom were at some time in their lives young but many of whom were never old. So we inherit whatever it takes to be young, but not necessarily whatever it takes to be old. We tend to inherit genes for dying a long time after we're born, but not for dying a short time after we're born.

To return to this chapter's pessimistic beginning, when the utility function – that which is being maximized – is DNA survival, this is not a recipe for happiness. So long as DNA is passed on, it does not matter who or what gets hurt in the process. It is better for the genes of Darwin's ichneumon wasp that the caterpillar should be alive, and therefore fresh, when it is eaten, no matter what the cost in suffering. Genes don't care about suffering, because they don't care about anything.

If Nature were kind, she would at least make the minor concession of anesthetizing caterpillars before they are eaten alive from within. But Nature is neither kind nor unkind. She is neither against suffering nor for it. Nature is not interested one way or the other in suffering, unless it affects the survival of DNA. It is easy to imagine a gene that, say, tranquilizes gazelles when they are about to suffer a killing bite. Would such a gene be favored by natural selection? Not unless the act of tranquilizing a gazelle improved that gene's chances of being propagated into future generations. It is hard to see why this should be so, and we may therefore guess that gazelles suffer horrible pain and fear when they are pursued to the death – as most of them eventually are. The total amount of {132} suffering per year in the natural world is beyond all decent contemplation. During the minute it takes me to compose this sentence, thousands of animals are being eaten alive; others are running for their lives, whimpering with fear; others are being slowly devoured from within by rasping parasites; thousands of all kinds are dying of starvation, thirst and disease. It must be so. If there is ever a time of plenty, this very fact will automatically lead to an increase in population until the natural state of starvation and misery is restored.

Theologians worry away at the “problem of evil” and a related “problem of suffering.” On the day I originally wrote this paragraph, the British newspapers all carried a terrible story about a bus full of children from a Roman Catholic school that crashed for no obvious reason, with wholesale loss of life. Not for the first time, clerics were in paroxysms over the theological question that a writer on a London newspaper [The Sunday Telegraph] framed this way: “How can you believe in a loving, all-powerful God who allows such a tragedy?” The article went on to quote one priest's reply: “The simple answer is that we do not know why there should be a God who lets these awful things happen. But the horror of the crash, to a Christian, confirms the fact that we live in a world of real values: positive and negative. If the universe was just electrons, there would be no problem of evil or suffering.”

On the contrary, if the universe were just electrons and selfish genes, meaningless tragedies like the crashing of this bus are exactly what we should expect, along with equally meaningless good fortune. Such a universe would be neither evil nor good in intention. It would manifest no intentions of {133} any kind. In a universe of blind physical forces and genetic replication, some people are going to get hurt, other people are going to get lucky, and you won't find any rhyme or reason in it, nor any justice. The universe we observe has precisely the properties we should expect if there is, at bottom, no design, no purpose, no evil and no good, nothing but blind, pitiless indifference. As that unhappy poet A. E. Housman put it:

For Nature, heartless, witless Nature Will neither know nor care.

DNA neither knows nor cares. DNA just is. And we dance to its music. {134}

River Out Of Eden pic_6.jpg