Изменить стиль страницы

С силой тяготения "В" мы знакомы: это мощная сила, удерживающая Землю и другие планеты на их орбитах вокруг Солнца, а Луну и созданные руками человека спутники – на их орбитах вокруг Земли.

Сила тяготения "А" нам незнакома. Это небольшая гравитационная волна, являющаяся основной составляющей силы, которая не позволяет разлететься протонам и нейтронам. Проявление силы тяготения "А" в традиционной физике обозначается понятием “сильное взаимодействие” (strong nuclear force, буквально – мощная ядерная сила). Сила тяготения "А" – это волна, которую нужно создавать и усиливать, чтобы получить необходимое для межзвездных полетов искривление пространства-времени.

Итак, сила тяготения "А" действует на атомном уровне, а сила тяготения "В", представляющая собой большую гравитационную волну, – на уровне звезд и планет. Однако не впадайте в ошибку и не проводите прямой зависимости между величиной этих волн и их силой, потому что сила тяготения "А" значительно больше силы тяготения "В". На Земле силу "В" можно на короткое время “отключить”, просто подпрыгнув в воздух. Значит, она не так велика. Нетрудно обнаружить и силу "А", потому что она действует в ядре любого атома, будь то у нас на Земле или где-то в просторах Вселенной.

Однако возникает большая проблема, как только мы попытаемся применить действие силы тяготения "А" к макромиру. На настоящий момент я не знаю способа, который позволял бы регистрировать и наблюдать силу тяготения “А” в естественных или лабораторных условиях при помощи простых, общедоступных средств. Причина этого кроется, прежде всего, в том, что сила тяготения "А" является основной составной частью сил, действующих внутри атомного ядра, между протонами и нейтронами.

Это значит, что гравитационная волна "А", которую мы пытаемся создать в масштабах макромира, практически несоздаваема, так как заключена “внутри” материи, внутри атома – по крайней мере, внутри материи, существующей у нас на Земле. Однако по Земле можно судить не о всякой материи нашей Вселенной. Избыточная материя, образующаяся после возникновения звездной системы, непосредственно зависит от факторов, определявших этот процесс. Это так и только так, и не важно, считает ли кто-нибудь, что Вселенная появилась в результате эволюции или что первопричиной ее создания было некое высшее существо. На избыточную материю влияют два основных фактора: количество электромагнитной энергии и масса вещества, участвовавшего в процессе возникновения звездной системы.

Наша звездная система имеет одну звезду – Солнце. Но большинство звездных систем нашей Галактики, называемой Млечным путем, – это бинарные (двойные) и кратные (множественные) звездные системы.

Многие сходные системы имеют звезды, в сравнении с которыми наше Солнце – просто карлик. Очевидно, что при возникновении большой однозвездной системы, бинарной или множественной звездных систем имелось больше вещества и электромагнитной энергии, чем было необходимо. Это вело к образованию в этих системах элементов, не встречающихся на Земле.

Ученые пришли к выводу, что должны существовать комбинации протонов и нейтронов, образующие устойчивые элементы с атомным весом, превышающим максимальный вес элементов периодической таблицы, хотя ни один из подобных тяжелых элементов не встречается на Земле. Заметим, что 88 из 92 элементов периодической системы существуют в природе; некоторые из тяжелых элементов мы определяем лишь по едва заметным следам, многие – искусственно создаем в лабораториях.

С возрастанием атомного веса стабильность элементов понижается. Однако лабораторные эксперименты по исследованию тяжелых ионов (heavy-ion research), проведенные в Германии, показали, что этот закон действует только до определенного предела, поскольку период полураспада элемента, стоящего в периодической таблице под номером 108, короче, чем у элемента 109, хотя теоретически должно было быть наоборот. Наши наблюдения верны, это факт. Фактом является также то, что существуют тяжелые устойчивые элементы с более высокими атомными весами и имеющие большее количество протонов, нейтронов и электронов, чем любой элемент на Земле. И тем не менее, до настоящего времени физика не могла доказать это.

Однако теперь такое доказательство имеется. Важнейшим свойством такого тяжелого устойчивого элемента является то, что сил тяготения "А" в его ядре слишком “много”, так что их действие распространяется и за пределы атома. Таким образом, эти элементы имеют вокруг себя поле силы тяготения "А" в дополнение к полю силы "В", присущему всем элементам без исключения.

Ни один природный элемент на Земле не имеет достаточно протонов и нейтронов, чтобы волна силы тяготения "А" смогла выйти за пределы атома и стала бы доступной для ее регистрации приборами. Несмотря на то, что волна силы тяготения "А" распространяет свое действие на ничтожно малом расстоянии вокруг атома, ее свойства можно измерить. Она имеет амплитуду, длину волны и частоту, как и любая другая волна электромагнитного спектра.

Если волну силы тяготения "А" можно зарегистрировать, то ее, как любую другую электромагнитную волну, можно и усилить. Чтобы увидеть, как может быть усилена любая волна, воспользуемся вот этим осциллоскопом. Вы видите, что он графически отображает звук в виде волны. Если мы усилим звук – смотрите, величина, или амплитуда волны, возрастает. Изменение кривой говорит о том, что звук усилился.

Можно усилить и волну силы тяготения "А", чтобы затем использовать ее в нужных целях – для искривления пространства-времени, необходимого для путешествий во Вселенной.

С мощью усиленной волны силы "А" можно сравнить только силу тяготения черной дыры, способной так же сильно искривлять пространство-время. Это возвращает нас к старому вопросу: как создать гравитационное поле? Необходим элемент, который был бы достаточно тяжел для того, чтобы волна силы тяготения "А" распространилась за пределы атома. В этом случае ее можно было бы усиливать и использовать для искривления пространства-времени. И последний вопрос, чтобы завершить наши научные уроки: что должно явиться источником энергии для космических путешествий?

Вы, очевидно, можете себе представить, какое количество энергии нужно затратить, чтобы получить искривление пространства-времени, достаточное для таких путешествий. Мы будем усиливать волну, едва выходящую за пределы атома, до тех пор, пока она не сможет перемещать огромные массы вещества. Думаю, что те из вас, кто более или менее знаком с источниками энергии, все еще в недоумении, каким образом можно разместить на борту компактный, легкий источник энергии такой огромной мощности. Чтобы это стало понятным, мне придется более подробно объяснить некоторые вещи, которых мы вскользь коснулись при рассмотрения последнего вопроса.

Вспомните, что мы создаем тяжелые элементы главным образом в ускорителях частиц и что их стабильность уменьшается по мере возрастания атомного веса. Что же это значит?

Сначала мы синтезируем тяжелые, неустойчивые элементы в ускорителе. Затем бомбардируем их различными атомными и субатомными частицами. Помним, что наша цель – получить более стабильный элемент.

В результате бомбардировки один элемент превращается в другой, более тяжелый. Этот новый элемент имеет более высокий атомный вес. Атомный вес показывает, сколько протонов заключено в ядре атома. Когда я говорю, что атомный вес элемента увеличился, это значит, что в его ядре увеличилось количество протонов. Что означает "стабильность уменьшается"? Стабильность элемента определяется временем, в течение которого он существует, пока не распадется. Атомы одних элементов распадаются быстрее, чем атомы других. Чем быстрее распадается элемент, тем более нестабильным он считается. При распаде атома происходит высвобождение, или излучение, субатомных частиц и энергии, что похоже на излучение, которое улавливает счетчик Гейгера.

Как Вы видите, счетчик Гейгера определяет излучение урана, точнее – улавливает субатомные частицы, высвобождаемые, или излучаемые, ядром урана в момент распада. Элементы, у которых излучение происходит непрерывно, называются радиоактивными. Тяжелые элементы, получаемые в ускорителях, относятся к радиоактивным, они быстро распадаются. Так как мы в состоянии синтезировать только небольшое их количество и так как они очень быстро распадаются, мы не можем узнать о них достаточно много. И, тем не менее, элементы с высоким атомным весом, остающиеся при этом стабильными, существуют, хотя они и не встречаются на Земле и мы не можем синтезировать их в ускорителях частиц. Это элементы 114-115, отсутствующие в периодической системе. Следом за номером 115 снова идут нестабильные элементы и элемент 116, который распадается за доли секунды.