Изменить стиль страницы

So I worked seriously on the implementation of Emacs probably for only about four or six weeks. At which point it became clear that Stallman understood what the program was. I wanted to get back to doing graduate student things. So Stallman did the other 99.999 percent of the work. But I played a role in catalyzing it and beginning the implementation.

Seibel: On a different subject, academic computer science is very mathematical these days. How important is it for working programmers to be able to understand, say, the math in Knuth? Versus saying, “I need to sort things; I’m going to flip through Knuth and skip to where he says, ‘This is the best algorithm’ and implement that”?

Steele: I don’t know. There are parts of Knuth that I don’t understand because I don’t have the mathematical training. Particularly if it involves higher or continuous math. I’m a little weaker on that. I think my strengths are in things like combinatorics and permutations, group theory, things like that. And I find myself using that over and over and over again. Maybe that’s because that’s the particular hammer I have at hand. I don’t think that every programmer needs that. But I think that mathematics formalizes concepts that programmers do need to work with every day.

I’ll give you an example from my recent programming-language work on parallel languages, this Fortress project that I’ve got going. Suppose you want to add up a bunch of numbers. Well, one thing you can do is you can initialize a register to zero and add in the numbers one at a time—a classic sequential technique.

Notice that this depends on the addition operation having an identity. You needed to start with zero. Trivial little observation, but it’s there.

Now here’s another strategy—you can lay out all the numbers in a row and then add them up pairwise, giving you a bunch of sums, and keep adding pairwise until you’ve only got one number left. And of course if at any point you’ve got an odd number of them you just leave that one over extra and let it go to the next stage and so forth. Well, that works fine, too. And if you’re using floating-point numbers it may actually give you a little bit better accuracy, although with the bookkeeping overhead it’s sometimes not worth it.

Notice that this will give you the same answer, at least if you’re working with integers, as starting with zero and adding them one at a time. This depends on the fact that addition is associative. In other words, it doesn’t matter in what way you group the numbers.

And then there’s a third strategy. Suppose you’ve got a bunch of processors. You could parcel out the pairs to the processors and distribute that work. The “start with zero and add them one at a time” algorithm is hard to parallelize, but with the bunching in pairs, you’ve in effect made a tree and you can assign processors different parts of the tree, and they can do their parts independently, and only at the end do they need to interact and you get the sum.

OK, so that’s cool. Here’s another parallel strategy that’s more like the first one: pick some register and initialize it to zero, and then let processors compete for grabbing numbers and adding them into that common place. This involves questions of synchronization, but you will still get the same answer. But this depends on addition being both associative and commutative. That is, not only does it not matter how you group the numbers, it also doesn’t matter in what order you process the numbers.

Mathematicians have big, scary words like “identity” and “associativity” and “commutativity” to talk about this stuff—it’s their shorthand. But programmers need to know about ideas like, it doesn’t matter in what order you do it. And they need to know about ideas like, it’s OK if you regroup things. So to that extent I claim that mathematical ideas are important at some level to programmers.

Seibel: Obviously that’s a good example to give because anyone who understands arithmetic can understand it. But do you find that there are kind of higher-level concepts that come back into programming in the same way?

Steele: Now suppose I’m generating a report. The typical thing is you make a bunch of print statements and you depend on doing them in order and things get printed out in the order you said. Well, in this multicore world maybe I would like to break up the generation of the report and parcel it out to processors. Well, how about concatenating strings? Can I use the same techniques I used for adding up numbers? Turns out it is associative but not commutative—that tells me exactly which tricks will work for the strings and which ones won’t. As a language designer worrying about designing parallel programming languages, I find these concepts and a vocabulary for them very useful.

Seibel: Speaking of being a language designer, how have your ideas about language design changed over time?

Steele: I think that the biggest change in my thinking is what I set down in that talk “Growing a Language” at OOPSLA almost ten years ago, in 1998. Back in the ’70s people would invent languages and make a complete design and implement it and you’d be done. Or you wouldn’t be done, but you had this idea that there is this complete thing.

So Pascal was an invention. Things were in it for a reason and things were left out for a reason but it was a complete design. And if it turned out that it wasn’t complete—if it turned out that string processing wasn’t that great, well, too bad: Wirth had designed the language. And PL/I got designed and Ada got designed. And maybe Ada and C++ were close to the last of that generation. And C++ not so much, because it did sort of evolve over time.

I realized as languages got more complicated they were really too big to design all at once and that languages would necessarily from now on undergo evolution because they were too big to design all at once or to implement all at once. And that caused a change in how I approached programming-language design and thinking about it.

Seibel: So you think Java was not designed that way?

Steele: I think maybe Java was not and should have been. Java has evolved through the Java Community Process. That has addressed more API than core language issues. And while features have been added to the language over the last 12 or 13 years, I think the team that designed Java in the early ’90s thought they were designing a complete language for a specific selfcontained purpose. You know, they were aiming at set-top boxes.

Seibel: Right.

Steele: They hadn’t even envisioned at that point programming the World Wide Web or having as huge a user base as it has turned out to have. And so I thought they were designing a fairly small, self-contained kernel language on top of which you would then build a bunch of APIs and use it for various things. And that was the model and that’s the way it’s worked out. And part of my thoughts about “Growing a Language” came out of observing that process, that Java turned out to be a little bit too small and people wanted more features to get to other things.

In particular there was pressure for the kind of for loop that could iterate through an enumeration. That is a feature that got added to the language. There was pressure from the high-performance scientific computing community to put in more features to support floating point and stuff like that. That pretty much got rejected by the Java Community Process, and I think that was more for social reasons than technical reasons.

But there is this demand for adding to the language and then there was a social process that gated that in various ways. And so I got to thinking that maybe for a really successful programming language, you need to design and plan for the social process as much as you design the technical features of the language and think about how those two things are going to interact. And Fortress is our first experiment with that, or at least my first experiment with that. And it’s still early in the game—it’s only a half-done experiment.