Использование двигателей малой тяги имеет особенность, которая для ряда транспортируемых грузов может оказаться большим преимуществом: малые тяги создают и малые перегрузки. В связи с этим появляется возможность собирать крупногабаритные конструкции на низкой орбите и перемещать их затем на высокие, не предъявляя к созданной таким образом конструкции жесткие требования по перегрузкам, характерные при использовании двигателей большой тяги.
В ближайшие два десятилетия, видимо, только ЖРД и электрореактивные двигатели с солнечными батареями или ядерными энергоустановками будут использоваться для рассматриваемой операции.
В перспективе для целей транспортировки и пределах радиуса орбиты Луны могут быть использованы (и достаточно эффективно) двигатели с внешними искусственными источниками энергии. Так, луч лазера может применяться в качестве источника энергии для тех же электрореактивных двигателей, но, конечно, значительно эффективнее использовать его энергию непосредственно для ускорения рабочего тела
Естественный вопрос, который возникает при обсуждении проблемы использования лазерных двигателей на расстояниях до 300 тыс. км: каковы должны быть параметры установки, осуществляющей формирование луча, переносящего электромагнитную энергию на такое расстояние без значительных потерь?
Расчеты показывают, что при расстояниях 300 тыс. км необходимо иметь на аппарате и на энергетической станции антенны размером 30–40 м. Причем точность изготовления поверхности у этих антенн должна выдерживаться до 0,1 мкм. Отсюда ясно, что использовать получаемую таким способом энергию для создания большой тяги чрезвычайно сложно. С другой стороны, передавать по такому уникальному каналу относительно небольшие мощности (до нескольких мегаватт) вряд ли целесообразно хотя бы по той причине, что вместо приемной антенны на аппарате выгоднее поместить солнечную батарею.
Тем не менее, видимо, существуют варианты применения двигательных систем с использованием лазерного излучения для высокоорбитальных транспортных операций и транспортировки грузов к Луне, оправданные как с технической, так и с экономической точки зрения. На этом пути имеются технические трудности и проблемы, но они представляются вполне преодолимыми в рамках разумной экстраполяции современной технологии.
Пилотируемые межпланетные перелеты. Многочисленные полеты автоматических станций к Венере, Марсу и дальним планетам Солнечной системы создали впечатление, что это задача скорее сегодняшнего, чем завтрашнего дня. Во всяком случае, пилотируемые полеты к Марсу и Венере давно перестали быть объектом научно-фантастической литературы. Вместе с тем возможное решение этих задач в рамках современной технологии, т. е. с использованием только ЖРД, представляется крайне громоздким и чрезвычайна дорогим. Один из самых «скромных» вариантов экспедиции на Марс предусматривает при полезной нагрузке межпланетного корабля 50 т выведение на низкую орбиту элементов конструкции корабля и топлива общей массой 500–700 т пятью — семью пусками ракет типа «Сатурн-5».
Но пугает не сама начальная масса, а необходимость проведения большого объема сложных монтажных работ в космосе. Выведение же совокупного полезного груза массой 500 — 1000 т, как уже отмечалось, будет ординарной задачей для ведущих космических держав уже к концу 80-х годов. Следует отметить, что для решения задачи полета к Марсу с помощью электрореактивных двигателей малой тяги и ЯЭУ или при использовании твердофазного ядерного реактора со скоростью истечения около 9 км/с общая выводимая на опорную орбиту масса составит 150–200 т. Продолжительность марсианской экспедиции во всех случаях примерно одинакова — 2 года 8 месяцев.
Уменьшение продолжительности экспедиции в 2 раза потребует увеличения энергетических затрат на порядок. В то же время уменьшение срока экспедиций к планетам весьма желательно. Здесь открываются широкие перспективы перед двигателями с высокими энергетическими показателями, в частности, газофазными ядерными двигателями, термоядерными и импульсными термоядерными двигателями. Нетрудно видеть, что речь здесь идет о двигателях, проблема создания которых на грани современных технологических возможностей. В связи с этим, во всяком случае на первых этапах пилотируемых межпланетных полетов, значительный выигрыш может быть достигнут за счет применения двигателей с использованием внешних источников электромагнитного излучения в качестве двигателей большой тяги при старте с орбиты ИСЗ.
Сравнительные характеристики различных типов двигателей для марсианской экспедиции приведены в табл. 2.
Таблица 2
Экспедиции на Марс
Основные характеристики | Тип траектории | |
гомановская | параболическая | |
Минимальная полная продолжительность экспедиции, сут | 972 | 153 |
Суммарная характеристическая скорость при старте с орбиты ИСЗ, км/с | 10,0 | 30,4 |
Масса на орбите ИСЗ при массе КА 50 т для разных типов двигательных систем, т | ||
ЖРД (водород + фтор) | 480 | 4 |
твердофазный ядерный двигатель | 150 | 1500 |
электрореактивный двигатель с ЯЭУ | 150 | 1500 |
газофазный ядерный двигатель | 90 | 250 |
vистечения | 300 | 3 |
vистечения | 120 | 700 |
Реальны ли полеты к звездам? По современным представлениям, для межзвездных перелетов наиболее подходящими являются фотонные двигатели, в которых используется реакция аннигиляции вещества с антивеществом. Однако решение проблемы создания таких двигателей, равно как и проблемы получения топлива к ним, настолько далеко от возможностей современной технологии, что рецепт оказывается явно бессодержательным.
Группа английских исследователей предприняла попытку проанализировать проблему пилотируемых полетов к ближайшим звездам (Проксима Центавра, α Центавра, звезда Бернарда), основываясь на не слишком далекой экстраполяции современных технологических возможностей. Из систем, возможных с точки зрения современной технологии, рассматривались электрореактивная с ядерной энергетической установкой, системы разгона с лучевой энергией от лазера с космическим базированием, системы типа «солнечный парус», ядерные двигатели большой тяги. Как оказалось, перечисленные типы двигателей по разным причинам не могут решить задачу, и вот почему.
Электрореактивный двигатель с ядерной энергетической установкой дает слишком малый темп набора скорости, что приводит к большой длительности путешествия. Системы разгона с лучевой энергией от лазера с космическим базированием и системы типа «солнечный парус» имеют меньшую массу по сравнению с ядерно-электрической системой, но доля преобразуемой энергии (в кинетическую энергию движения космического аппарата) настолько мала, что также требуется длительное время разгона. Ядерные двигатели большой тяги типа теплового ядерного двигателя «Нерва» могут обеспечить требуемое ускорение. Однако скорости истечения, достижимые с помощью таких систем, порядка 10 км/с, а это означает, что потребуется очень большое отношение масс для достижения необходимой конечной скорости. Количество топлива, необходимое во всех таких системах, делает их нереализуемыми.
Наиболее близкой к реализации двигательной системой, пригодной для полета к звездам, авторы считают термоядерный двигатель на микровзрывах с инициированием реакции электронным ускорителем, описанный ранее. Однако выводы авторов не являются бесспорными. Дело здесь как в возможностях реализации предложенной схемы, так и в наличии конкурирующих схем.
Чтобы яснее представить себе, какой скачок в характеристиках двигателей должен произойти, чтобы межзвездные перелеты стали возможными, достаточно взглянуть на табл. 3, где приведены данные, относящиеся к полетам от Земли к самой далекой планете Солнечной системы — Плутону.