В 1852 Э. Франкленд , изучая металло-органические соединения, заложил основы учения о валентности. Он показал, что атомы элементов обладают определённой «соединительной силой, удовлетворяясь одним и тем же числом присоединяющихся атомов». За единицу валентности была принята валентность водорода. Позднее Ф. А. Кекуле ввёл понятие о соединениях типа метана; из этого следовало, что атом углерода четырёхвалентен; он же высказал предположение (1858), что атомы углерода могут соединяться в цепи. В том же году А. Купер впервые составил графические формулы органических соединений, исходя из того, что атом углерода четырёхвалентен. Однако Кекуле не сумел ещё полностью преодолеть ограниченность «типических» воззрений. Это сделал А. М. Бутлеров (1861), создав химического строения теорию , согласно которой химические свойства вещества определяются составом и строением молекул, а реакционная способность зависит от того, в какой последовательности атомы связаны в данной молекуле, а также от их взаимного влияния.
Первый международный конгресс химиков в Карлсруэ (1860) четко разграничил понятия атома, молекулы, эквивалента; это способствовало дальнейшему развитию Х. В 1859—61 она обогатилась весьма совершенным методом спектрального анализа , благодаря чему удалось обнаружить присутствие некоторых химических элементов в составе небесных тел; была установлена связь между физикой (оптикой), астрономией и Х.
По мере открытия новых химических элементов всё острее ощущалась необходимость их систематизации. В 1869 Д. И. Менделеев обнаружил их взаимную связь: он создал периодическую систему элементов и открыл лежащий в её основе закон (периодический закон Менделеева ). Это открытие явилось теоретическим синтезом всего предшествующего развития Х.: Менделеев сопоставил физические и химические свойства всех известных тогда 63 химических элементов с их атомными весами и раскрыл зависимость между двумя важнейшими количественно измеримыми свойствами атомов, на которых строилась вся Х., — атомным весом и валентностью («формами соединений»).
На основе периодической системы Менделеев исправил ранее принятые значения атомных весов многих элементов и предсказал ряд не открытых ещё элементов, подробно описав предполагаемые свойства трёх из них. Эти прогнозы, а вместе с ними и сам периодический закон вскоре получили блестящее опытное подтверждение. В дальнейшем периодический закон лег в основу развития Х. и всего учения о веществе.
По мере прогресса физики и Х. устанавливались основные понятия и законы, которые, с одной стороны, поставили на более высокую ступень обе эти науки, а с другой — послужили основой для становления физической химии, зарождение отдельных отраслей которой началось ещё в конце 18 — 1-й половине 19 вв. В исследовании общих закономерностей, управляющих химическими процессами, оказалась крайне заинтересованной и химическая промышленность, достигшая значительных успехов к 80-м гг. 19 в.
Изучение тепловых эффектов химических процессов получило прочную основу после открытия Г. И. Гессом (1840) основного теплового закона химических процессов (см. Гесса закон ). Во 2-й половине 19 в. большая работа по определению теплот химических реакций была проделана П. Э. М. Бертло , Х. П. Ю. Томсеном , Н. Н. Бекетовым и др.; она завершилась к концу 19в. созданием одного из разделов физической Х. — термохимии . С возникновением термодинамики и развитием термохимии в тесной связи с последней во 2-й половине 19 в. начинает развиваться химическая термодинамика, изучающая энергетические эффекты, которыми сопровождаются химические процессы, самую возможность, направление и пределы таких процессов и др. термодинамические явления в физико-химических системах (труды Дж. Гиббса , Я. Вант-Гоффа , А. Ле Шателье и др.).
Успешно начатые Г. Дэви электрохим. исследования получили количественную завершённость в трудах М. Фарадея , открывшего (1833—34) законы электролиза . Со 2-й половины 19 в. началось изучение механизма прохождения электрического тока через растворы электролитов (работы Р. Клаузиуса , И. В. Гитторфа , Ф. Кольрауша и др.), которое привело к созданию С. Аррениусом теории электролитической диссоциации (1883—87). Согласно этой теории, электролиты в растворах распадаются на ионы . Приложение законов термодинамики к электрохимии позволило установить и причину возникновения эдс в гальванических цепях.
Одновременно развивалось учение о растворах , которое обогатилось результатами исследований Вант-Гоффа, посвященных разбавленным растворам; в этих трудах, выполненных в 1885—89, свойства растворённых веществ сопоставлялись со свойствами газов , а растворитель считался индифферентной средой. Согласно химической теории водных растворов Менделеева, разработанной в 1865—87, растворённое вещество и растворитель взаимодействуют между собой в растворе. Менделеев не проводил резкой границы между химическим взаимодействием и взаимодействием растворённого вещества и растворителя в растворе. Этот вывод получил дальнейшее развитие в работах Н. С. Курнакова и его школы по физико-химическому анализу .
Наблюдения над жидкими системами показали, что наряду с истинными растворами, в которых растворённые вещества находятся в виде отдельных молекул и ионов, существуют и такие, в которых «растворённое» вещество находится в виде агрегатов, состоящих из огромного числа молекул. Для таких систем Т. Грэм ввёл (1861) название «коллоиды». Дальнейшее изучение дисперсных систем привело к созданию коллоидной химии.
Уже в начале 19 в. были получены первые сведения об ускорении химических реакций под действием небольших количеств некоторых веществ. Такие процессы Э. Мичерлих назвал контактными (1833), а Берцелиус — каталитическими (1835). С тех пор как было налажено каталитическое производство серной кислоты (60-е гг. 19 в.), интерес к таким процессам сильно возрос. К концу 19 в. учение о катализе и практическое использование катализаторов заняли важное место в Х. С катализом теснейшим образом связана адсорбция , открытая Т. Е. Ловицем в 1785. В 1878 Гиббс установил основные законы поверхностных явлений, адсорбции и образования новых фаз.
Со 2-й половины 19 в. развивается учение о скоростях химических реакций и химическом равновесии. Значение активной массы (концентрации) реагирующих веществ было отмечено ещё в 1801—03 К. Бертолле . Последующая разработка вопросов, связанных с равновесием химических реакций, привела К. Гульдберга и П. Вааге к открытию (1864—67) действующих масс закона который лёг в основу учения о скоростях реакций. Систематические работы Н. А. Меншуткина (с 1877) явились существенным вкладом в установление кинетических закономерностей химических реакций. В 1884 Вант-Гофф суммировал накопившийся в этой области материал в виде кинетических уравнений.