Изменить стиль страницы

Структурные схемы фотоэлектронных умножителей (ФЭУ) с линейными динодными системами: а — с корытообразными динодами; б — с жалюзийными динодами; Ф — световой поток; К — фотокатод; В — фокусирующие электроды катодной (входной) камеры; Э — диноды; А — анод; штрихпунктирными линиями изображены траектории электронов.

Фотоэлектроны

Фотоэлектро'ны, электроны, эмитированные атомом, молекулой или конденсированной средой под действием квантов электромагнитного излучения – фотонов (см. Фотоэлектронная эмиссия ), а также электроны в конденсированной среде, поглотившие фотоны и обладающие вследствие этого повышенной (относительно равновесной) энергией (см. Фотоэффект внутренний , Фотопроводимость ).

Фотоэлемент

Фотоэлеме'нт, электронный прибор, в котором в результате поглощения энергии падающего на него оптического излучения генерируется эдс (фотоэдс ) или электрический ток (фототок). Действие Ф. основывается на фотоэлектронной эмиссии или фотоэффекте внутреннем .

   Ф., действие которого основано на фотоэлектронной эмиссии, представляет собой (рис., а ) электровакуумный прибор с 2 электродами – фотокатодом и анодом (коллектором электронов), помещенными в вакуумированную либо газонаполненную стеклянную или кварцевую колбу. Световой поток, падающий на фотокатод, вызывает фотоэлектронную эмиссию с его поверхности; при замыкании цепи Ф. в ней протекает фототок, пропорциональный световому потоку. В газонаполненных Ф. в результате ионизации газа и возникновения несамостоятельного лавинного электрического разряда в газах фототок усиливается. Наиболее распространены Ф. с сурьмяно-цезиевым и кислородно-серебряно-цезиевым фотокатодами.

  Ф., действие которого основано на внутреннем фотоэффекте, – полупроводниковый прибор с гомогенным электронно-дырочным переходом (р–n -переходом) (рис. , б), полупроводниковым гетеропереходом или контактом металл-полупроводник (см. Шотки диод ). Поглощение оптического излучения в таких Ф. приводит к увеличению числа свободных носителей внутри полупроводника . Под действием электрического поля перехода (контакта) носители заряда пространственно разделяются (например, в Ф. с р–n -переходом электроны накапливаются в n -oбласти, а дырки – в р -области), в результате между слоями возникает фотоэдс; при замыкании внешней цепи Ф. через нагрузку начинает протекать электрический ток. Материалами, из которых выполняют полупроводниковые Ф., служат Se, GaAs, CdS, Ge, Si и др.

  Ф. обычно служат приёмниками излучения или приёмниками света (полупроводниковые Ф. в этом случае нередко отождествляют с фотодиодами ); полупроводниковые Ф. используют также для прямого преобразования энергии солнечного излучения в электрическую энергию – в солнечных батареях , фотоэлектрических генераторах .

  Основные параметры и характеристики Ф. 1) Интегральная чувствительность (ИЧ) – отношение фототока к вызывающему его световому потоку при номинальном анодном напряжении (у вакуумных Ф.) или при короткозамкнутых выводах (у полупроводниковых Ф.). Для определения ИЧ используют, как правило, эталонные источники света (например, лампу накаливания с воспроизводимым значением цветовой температуры нити, обычно равным 2840 К). Так, у вакуумных Ф. (с сурьмяно-цезиевым катодом) ИЧ составляет около 150 мка/лм, у селеновых – 600–700 мка/лм, у германиевых – 3×104 мка/лм. 2) Спектральная чувствительность – величина, определяющая диапазон значений длин волн оптического излучения, в котором практически возможно использовать данный Ф. Так, у вакуумных Ф. с сурьмяно-цезиевым катодом этот диапазон составляет 0,2–0,7 мкм, у кремниевых – 0,4–1,1 мкм, у германиевых – 0,5–2,0 мкм. 3) Вольтамперная характеристика – зависимость фототока от напряжения на Ф. при постоянном значении светового потока; позволяет определить оптимальный рабочий режим Ф. Например, у вакуумных Ф. рабочий режим выбирается в области насыщения (область, в которой фототок практически не меняется с ростом напряжения). Значения фототока (вырабатываемого, например, кремниевым Ф., освещаемым лампой накаливания) могут при оптимальной нагрузке достигать (в расчёте на 1 см2 освещаемой поверхности) несколько десятков ма (для кремниевых Ф., освещаемых лампой накаливания), а фотоэдс – нескольких сотен мв. 4) Кпд, или коэффициент преобразования солнечного излучения (для полупроводниковых Ф., используемых в качестве преобразователей энергии), – отношение электрической мощности, развиваемой Ф. в номинальной нагрузке к падающей световой мощности. У лучших образцов Ф. кпд достигает 15–18%.

  Ф. используют в автоматике и телемеханике, фотометрии, измерительной технике, метрологии, при оптических, астрофизических, космических исследованиях, в кино- и фототехнике, факсимильной связи и т.д.; перспективно использование полупроводниковых Ф. в системах энергоснабжения космических аппаратов, морской и речной навигационной аппаратуре, устройствах питания радиостанций и др.

  Лит.: Рывкин С. М., Фотоэлектрические явления в полупроводниках, М., 1963; Фотоэлектронные приборы, М., 1965; Васильев А. М., Ландсман А. П., Полупроводниковые фотопреобразователи М 1971.

  М. М. Колтун.

Большая Советская Энциклопедия (ФО) i008-pictures-001-295999581.jpg

Схематическое изображение фотоэлемента с внешним (а) и внутренним (б) фотоэффектом; К — фотокатод; А — анод; Ф — световой поток; n и p — области полупроводника с донорной и акцепторной примесями; Е — источник постоянного тока, служащий для создания в пространстве между К и А электрического поля, ускоряющего фотоэлектроны; Rн — нагрузка; пунктирной линией обозначен р — n-переход.

Фотоэффект

Фотоэффе'кт, испускание электронов веществом под действием электромагнитного излучения (фотонов ). Ф. был открыт в 1887 Г. Герцем . Первые фундаментальные исследования Ф, выполнены А. Г. Столетовым (1888). Он установил, что в возникновении фототока в цепи, содержащей металлические электроды и источник напряжения, существенную роль играет освещение отрицательного электрода и что сила фототока пропорциональна интенсивности света. Ф. Ленард (1899) доказал, что при освещении металлов из них испускаются электроны. Первое теоретическое объяснение законов Ф. дал А. Эйнштейн (1905). В дальнейшем теория Ф. была развита в наиболее последовательном виде И. Е. Таммом и С. П. Шубиным (1931). Большой вклад в экспериментальное исследование Ф. внесли работы А. Ф. Иоффе (1907), П. И. Лукирского и С. С. Прилежаева (1928).

  Ф. – квантовое явление, его открытие и исследование сыграли важную роль в экспериментальном обосновании квантовой теории: только на её основе оказалось возможным объяснение закономерностей Ф. Свободный электрон не может поглотить фотон, т.к. при этом не могут быть одновременно соблюдены законы сохранения энергии и импульса. Ф. из атома, молекулы или конденсированной среды возможен из-за связи электрона с окружением. Эта связь характеризуется в атоме энергией ионизации , в конденсированной среде – работой выхода . Закон сохранения энергии при Ф. выражается соотношением Эйнштейна:

Большая Советская Энциклопедия (ФО) i-images-171999531.png
, где E – кинетическая энергия фотоэлектрона,
Большая Советская Энциклопедия (ФО) i-images-128389536.png
– энергия фотона,
Большая Советская Энциклопедия (ФО) i-images-166580230.png
 – Планка постоянная, Ei – энергия ионизации атома или работа выхода электрона из тела. При
Большая Советская Энциклопедия (ФО) i-images-114893414.png
 < Ei , Ф. невозможен.