Изменить стиль страницы

  Мощный источник теплоты — Солнце , посылающее на Землю поток энергии мощностью в 1,8×1017 вт. Однако плотность солнечной энергии на поверхности Земли мала и составляет около 1 квт/м 2 . Ещё не разработаны приемлемые с технико-экономической точки зрения схемы и установки для улавливания солнечного излучения в значительных масштабах. Однако в ряде районов солнечная энергия применяется для опреснения воды, нагревания воды для с.-х. (парники, теплицы) и бытовых нужд, а в ряде случаев — для производства электроэнергии.

  Важное значение с точки зрения экономии природного топлива придаётся использованию вторичных тепловых ресурсов, например нагретых отходящих газов металлургических печей или двигателей внутреннего сгорания, теплота которых обычно утилизируется в котлах-утилизаторах .

  Использование теплоты. Генерированная различными способами теплота может либо непосредственно потребляться каким-либо технологическим процессом (теплоиспользование), либо перерабатываться в др. виды энергии (теплоэнергетика ). Цели и методы отрасли Т. — теплоиспользования — многообразны. Широко применяется нагрев в металлургии. Например, чугун из железной руды получают в доменной печи, в которой восстановление окиси железа углеродом происходит при температурах около 1500 °С; теплота выделяется при горении кокса. Сталь из чугуна вырабатывается в мартеновских печах при температуре около 1600 °С, которая поддерживается в основном в результате сжигания жидкого или газообразного органического топлива. При получении стали в конвертере в чугун вдувают кислород; необходимая температура создаётся в результате окисления углерода, содержащегося в чугуне. В литейном производстве теплота, необходимая для поддержания требуемой температуры в печи, генерируется либо в результате сжигания в печи топлива (чаще всего газа или мазута), либо за счёт электроэнергии.

  Нагрев до той или иной температуры характерен для большинства процессов химической технологии, пищевой промышленности и пр. Подвод или отвод теплоты осуществляется в теплообменниках , автоклавах , сушильных установках, выпарных устройствах, дистилляторах, ректификационных колоннах, реакторах и т. п. с помощью теплоносителей. При этом, если в аппарате требуется поддерживать достаточно высокую температуру, теплоносителем могут быть непосредственно продукты сгорания органического топлива. Однако в большинстве случаев применяются промежуточные теплоносители, которые отбирают теплоту от продуктов сгорания топлива и передают её веществу, участвующему в технологическом процессе, либо отбирают теплоту от этого вещества и передают её в др. часть установки или в окружающую среду. Наиболее часто применяются следующие теплоносители: вода и водяной пар, некоторые органические вещества, например даутерм (см. Дифенил ), кремнийорганические соединения , минеральные масла, расплавленные соли, жидкие металлы, воздух и др. газы.

  Конструктивные схемы теплообменников весьма разнообразны и зависят от их назначения, уровня температур и типа теплоносителя. По принципу действия различают рекуперативные теплообменники, в которых теплота от одного вещества (теплоносителя) к другому передаётся через твёрдую, обычно металлическую, стенку; регенеративные теплообменники, в которых теплота воспринимается и отдаётся специальной насадкой, поочерёдно омываемой нагревающим и нагреваемым телами; смесительные теплообменники, в которых передача теплоты осуществляется при соприкосновении веществ. Наиболее распространены трубчатые рекуперативные теплообменники, где один из теплоносителей протекает внутри труб, а другой — в межтрубном пространстве. Основные характеристики рекуперативных теплообменников: размер поверхности теплообмена и коэффициент теплопередачи, представляющий собой количество теплоты, передаваемой через 1м 2 поверхности теплообмена при разности температур между теплоносителями в 1 °С. Этот коэффициент для данного теплообменника зависит от типа теплоносителей, их параметров и скоростей движения.

  Значительная доля получаемой теплоты в холодное время года идёт на бытовое потребление, то есть компенсацию потерь теплоты через стены зданий, потерь, связанных с вентиляцией помещений и прочее. В большинстве городов СССР используется отопление от ТЭЦ и от центральных котельных. В этом случае на ТЭЦ или в котельной устанавливаются бойлеры, в которых подогревается сетевая вода, направляемая в дома для отопления. В качестве отопительных приборов применяются либо металлические оребрённые теплообменники (радиаторы ), устанавливаемые непосредственно в помещении, либо трубчатые нагреватели, вмонтированные в стеновые панели.

  В отдельных зданиях используется индивидуальное отопление. В этом случае в подвальном помещении здания размещается водогрейный котёл , и нагретая в нём вода в результате естественной циркуляции протекает через отопительные приборы. В сельской местности в жилых домах используется печное отопление. В районах с дешёвой электроэнергией иногда применяют электрическое отопление с помощью электрических калориферов , электрокаминов и др. С теоретической точки зрения непосредственное отопление с помощью электроэнергии нецелесообразно, так как, например, с помощью теплового насоса можно получить для целей отопления больше теплоты, чем затрачено электроэнергии. При этом на отопление пойдёт как количество теплоты, которое эквивалентно затраченной электроэнергии, так и некоторое количество теплоты, которое будет отобрано от окружающей среды и «поднято» на более высокий температурный уровень. Однако тепловые насосы не получили распространения в связи с их высокой стоимостью.

  Для получения механической работы за счёт теплоты применяют тепловые двигатели основные энергетические агрегаты заводских, транспортных и пр. теплосиловых установок; в электрическую энергию теплота преобразуется в магнитогидродинамических генераторах и термоэлектрических генераторах и т. д. В середине 70-х гг. 20 в. в мире на производство электроэнергии расходуется около 30% всей получаемой теплоты.

  Теоретические основы теплотехники. Процессы генерации и использования теплоты базируются на теоретических основах Т. — технической термодинамике и теплопередаче .

  В термодинамике рассматриваются свойства макроскопических систем, находящихся в состоянии термодинамического равновесия, и процессы перехода между этими состояниями. Равновесное состояние полностью характеризуется небольшим числом физических параметров. Например, состояние однородных жидкости или газа определяется заданием двух из трёх величин: температуры, объёма, давления (см. Клапейрона уравнение , Ван-дер-Ваальса уравнение ). Энергетическая эквивалентность теплоты и работы устанавливается первым началом термодинамики . Второе начало термодинамики определяет необратимость макроскопических процессов, протекающих с конечной скоростью, и лимитирует максимальное значение кпд при преобразовании теплоты в работу.

  Теплопередача изучает теплообмен (процессы переноса теплоты) между теплоносителями через разделяющие их пространство или твёрдую стенку, через поверхность раздела между ними. В теплотехнических устройствах теплота может передаваться лучистым теплообменом , конвекцией , теплопроводностью .