Изменить стиль страницы

Теплолюбивые растения

Теплолюби'вые расте'ния, растения, на которые губительно действуют низкие положительные температуры (ниже 6 °С). К Т. р. относятся выходцы из тёплых и жарких стран, в том числе культурные растения — рис, огурец, хлопчатник и др. Степень повреждения Т. р. при воздействии низкой положительной температуры зависит как от условий их произрастания (влажность воздуха, освещённость и пр.), так и от видовых особенностей, возраста и физиологического состояния растений. Повреждения растений под действием низкой положит. Температуры обнаруживаются не сразу (нередко уже после прекращения охлаждения). Гибель растений объясняется необратимым нарушением обмена веществ.

Теплоносители

Теплоноси'тели, движущаяся среда, применяемая для передачи теплоты от более нагретого тела к менее нагретому. Т. служат для охлаждения, сушки, термической обработки и т. п. процессов в системах теплоснабжения, отопления, вентиляции, в технологических тепловых и др. устройствах (см. Теплообменник ). Наиболее распространённые Т.: топочные (дымовые) газы, вода, водяной пар, жидкие металлы (калий, натрий, ртуть), фреоны, аэровзвеси сыпучих материалов и т. д. Т. могут в процессе передачи теплоты изменять своё агрегатное состояние (кипящие жидкости, конденсирующиеся пары) или сохранять его неизменным (некипящие жидкости, перегретые пары, неконденсирующиеся газы). В первом случае температура Т. остаётся неизменной, так как передаётся лишь теплота фазового перехода ; во втором случае температура Т. изменяется (понижается или повышается). Особые требования предъявляются к Т. в ядерных реакторах.

  Лит.: Чечеткин А. В.. Высокотемпературные теплоносители, 3 изд., М.. 1971.

Теплоноситель

Теплоноси'тель в ядерном реакторе, жидкое или газообразное вещество, пропускаемое через активную зону реактора и выносящее из неё тепло, выделяющееся в результате реакции деления ядер. В энергетических реакторах Т. из реактора поступает в парогенератор, в котором вырабатывается пар, приводящий в действие турбины (в ряде случаев сам Т. — пароводяной или газовый — может служить рабочим телом турбинного цикла). В исследовательских (например, материаловедческих) и специальных реакторах (например, в реакторах для накопления радиоактивных изотопов) Т. осуществляет лишь сток тепла, выносимого из активной зоны. К Т. предъявляют след. требования: слабое поглощение нейтронов в Т. (в тепловых реакторах ) либо слабое замедление их (в быстрых реакторах ); химическая стойкость Т. в условиях интенсивного радиационного облучения; низкая коррозионная активность по отношению к конструкционным материалам, с которыми Т. находится в контакте; высокий коэффициент теплопередачи; большая удельная теплоёмкость; низкое рабочее давление при высоких температурах. В тепловых реакторах в качестве Т. используют воду (обычную и тяжёлую), водяной пар, органической жидкости, двуокись углерода; в быстрых реакторах — жидкие металлы (преимущественно натрий), а также газы (например, водяной пар, гелий). Часто Т. служит жидкость, являющаяся одновременно и замедлителем.

   Лит. см. при ст. Ядерный реактор .

  С. А. Скворцов.

Теплообмен

Теплообме'н, самопроизвольный необратимый процесс переноса теплоты в пространстве, обусловленный неоднородным полем температуры. В общем случае перенос теплоты может также вызываться неоднородностью полей других физически величин, например разностью концентраций (диффузионный термоэффект). Различают 3 вида Т.: теплопроводность , конвекция и лучистый теплообмен (на практике Т. обычно осуществляется всеми 3 видами сразу). Т. определяет или сопровождает многие процессы в природе (например, ход эволюции звёзд и планет, метеорологические процессы на поверхности Земли и т. д.). в технике и в быту. Во многих случаях, например при исследовании процессов сушки, испарительного охлаждения, диффузии, Т. рассматривается совместно с массообменом . Т. между двумя теплоносителями через разделяющую их твёрдую стенку или через поверхность раздела между ними называется теплопередачей .

  Лит.: см. при статьях об отдельных видах теплообмена.

Теплообмен в атмосфере

Теплообме'н в атмосфе'ре, обмен теплотой, происходящий в атмосфере в горизонтальном и в вертикальном направлениях. Поток тепла направлен от более нагретых областей к менее нагретым, а его интенсивность тем больше, чем больше разность температур. В общем в тропосфере температура убывает от экватора к полюсам, а на каждой данной широте понижается с возрастанием высоты. Вследствие междуширотного теплообмена атмосфера в тропических и субтропических широтах (в Северном полушарии до 40°) теряет тепло, а в более высоких широтах — получает его. Кроме того, теплообмен происходит также и в направлении широт вследствие неоднородности тепловых свойств подстилающей поверхности (например, суши и моря). При вертикальном Т. в а. поток тепла направлен главным образом вверх от земной поверхности.

  Перенос тепла в атмосфере осуществляется: конвекцией (включая адвекцию), то есть горизонтальным и вертикальным переносом воздуха; лучистым теплообменом, теплообменом, обусловленным испарением воды и конденсацией водяного пара, и в незначительной степени молекулярной теплопроводностью. Горизонтальный конвективный (адвективный) теплообмен между южным и северным широтами осуществляется меридиональным переносом воздушных масс и составляет около 1019 кал/сут. Конвективный теплообмен в вертикальном направлении вызывается как упорядоченными вертикальными перемещениями воздуха в областях циклонов и антициклонов , так и турбулентностью (см. Турбулентность в атмосфере и гидросфере ). В среднем для Северного полушария вертикальный поток тепла составляет около 50 кал/см×сут. Лучистый теплообмен происходит вследствие поглощения и излучения длинноволновой радиации водяным паром, пылью, углекислым газом, облаками и др. газами и аэрозолями атмосферы. В результате лучистого теплообмена в конечном счёте происходит теплоотдача из атмосферы в мировое пространство; количество отдаваемого тепла составляет в среднем 400 кал/см×сут. Потеря тепла в мировое пространство, в общем, уменьшается от низких широт к высоким. Теплообмен, вызванный процессами испарения и конденсации, приводит к переносу тепла с земной поверхности в атмосферу в среднем в количестве около 120 кал/см×сут. Наибольшее количество тепла этим путём переносится в низких широтах. В связи с существованием годовых и суточных изменений температуры и суточных колебаний скорости ветра наблюдается годовой и суточный ход интенсивности Т.

  Лит.: Пальмен Э., Ньютон Ч., Циркуляционные системы атмосферы, пер. с англ., Л., 1973; Хргиан А. Х., Физика атмосферы, Л., 1969; Кондратьев К. Я., Лучистый теплообмен в атмосфере, Л., 1956.