Изменить стиль страницы

  Фокусируя лазерное излучение, можно исследовать состав малых количеств вещества (имеющих размеры порядка длины волны). Это успешно применяется в локальном эмиссионном спектральном анализе.

  Приборы, применяемые в С. л., принципиально отличаются от обычных спектральных приборов. В приборах, использующих лазеры с перестраиваемой частотой, отпадает необходимость в разложении излучения в спектр с помощью диспергирующих элементов (призм, дифракционных решёток), являющихся основной частью обычных спектральных приборов. Иногда в С. л. применяют приборы, в которых излучение разлагается в спектр с помощью нелинейных кристаллов (см. рис. 4 в ст. Нелинейная оптика).

  Лит.: Летохов В. С., Чеботаев В. П., Принципы нелинейной лазерной спектроскопии, М., 1975; Менке Г., Менке Л., Введение в лазерный эмиссионный микроспектральный анализ, пер. с нем., М., 1968; Летохов B. C., Проблемы лазерной спектроскопии, «Успехи физических наук», 1976, т. 118, в. 2.

  В. С. Летохов.

Спектрофотометр

Спектрофото'метр (от спектр и фотометр), спектральный прибор, который осуществляет фотометрирование — сравнение измеряемого потока с эталонным (референтным) для непрерывного или дискретного ряда длин волн излучения. С. обеспечивает отсчёт или автоматическую регистрацию результатов сравнения в соответствующей двумерной шкале: абсцисса — длина волны, ордината — результат фотометрирования на этой длине волны. С. также называют аналитические приборы, которые не измеряют спектров, а определяют концентрации элементов в пробе по линиям абсорбции (или эмиссии) атомов в пламени (атомно-абсорбционные или пламенные С.) или определяют концентрации компонент в смесях веществ по характеристическим полосам поглощения (например, двуволновые инфракрасные С. или С.-анализаторы). Основные типы С. описаны в ст. Спектральные приборы.

Спектрофотометрия

Спектрофотоме'трия, область измерительной техники, объединяющая спектрометрию, фотометрию и метрологию и занимающаяся разработкой системы методов и приборов для количественных измерений спектральных коэффициентов поглощения, отражения, излучения, спектральной яркости как характеристик сред, покрытий, поверхностей, излучателей (см. также Спектральные приборы).

Спектры испускания

Спе'ктры испуска'ния, спектры оптические, испускаемые источниками света.

Спектры кристаллов

Спе'ктры криста'ллов (оптические) по структуре разнообразны. Наряду с узкими линиями они содержат широкие полосы (отношение частоты n к скорости света с от долей до нескольких тыс. см-1) и сплошные области спектра, простирающиеся на десятки тыс. см-1 (см. Спектры оптические). В инфракрасной области спектров поглощения наблюдаются полосы, связанные с квантовыми переходами между энергетическими уровнями, обусловленными колебательными движениями частиц кристалла, которым сопутствуют изменения электрического дипольного момента: поглощается фотон и рождается квант колебаний кристаллической решёткифонон. Процессы, сопровождающиеся рождением нескольких фононов, «размывают» и усложняют наблюдаемый спектр. В реальном кристалле обычно есть дефекты структуры (см. Дефекты в кристаллах), вблизи них могут возникать локальные колебания, например внутренние колебания примесной молекулы. При этом в спектре появляются дополнительные линии с возможными «спутниками», обусловленными связью локального колебания с решёточными. В полупроводниках некоторые примеси образуют центры, в которых электроны движутся на водородоподобных орбитах. Они дают спектр поглощения в инфракрасной области, состоящий из серии линий, заканчивающихся непрерывной полосой поглощения (ионизация примеси). Поглощение света электронами проводимости и дырками в полупроводниках и металлах начинается также в инфракрасной области (см. Металлооптика). В спектрах магнитоупорядоченных кристаллов аналогично фононам проявляют себя магноны (см. Спиновые волны).

  В спектре рассеянного света из-за взаимодействия света с колебаниями решётки, при которых изменяется поляризуемость кристалла, наряду с линией исходной частоты no появляются линии, сдвинутые по обе стороны от неё на частоту решёточных колебаний, что соответствует рождению или поглощению фононов (см. Комбинационное рассеяние света, рис. 1). Акустические решёточные колебания приводят к тому, что при рассеянии света на тепловых флуктуациях у центральной (не смещенной) релеевской линии также появляются боковые спутники, обусловленные рассеянием на распространяющихся флуктуациях плотности (см. Рассеяние света).

  Большинство неметаллических кристаллов за инфракрасной областью в определённом интервале частот прозрачно. Поглощение возникает снова, когда энергия фотона становится достаточно велика, чтобы вызвать переходы электронов из верхней заполненной валентной зоны в нижнюю часть зоны проводимости кристалла. Спектр этого интенсивного собственного поглощения света отображает структуру электронных энергетических зон кристалла и простирается дальше в видимый диапазон, по мере того как «включаются» переходы между др. энергетическими зонами. Положение края собственного поглощения определяет окраску идеального кристалла (без дефектов). Для полупроводников длинноволновая граница области собственного поглощения лежит в ближней инфракрасной области, для ионных кристалловв ближней ультрафиолетовой области. Вклад в собственное поглощение кристалла наряду с прямыми переходами электронов дают и непрямые переходы, при которых дополнительно рождаются или поглощаются фононы. Переходы электронов из зоны проводимости в валентные зоны могут сопровождаться рекомбинационным излучением.

  Электрон проводимости и дырка благодаря электростатическому притяжению могут образовать связанное состояние — экситон. Спектр экситонов может варьироваться от водородоподобных серий до широких полос. Линии экситонного поглощения лежат у длинноволновой границы собственного поглощения кристалла (рис. 2). Экситоны ответственны за электронные спектры поглощения молекулярных кристаллов. Известна также экситонная люминесценция.

  Энергии электронных переходов между локальными уровнями дефектных центров попадают обычно в область прозрачности идеального кристалла, благодаря чему они часто обусловливают окраску кристалла. Например, в щёлочно-галоидных кристаллах возбуждение электрона, локализованного в анионной вакансии (F-центр окраски), приводит к характеристической окраске кристалла. Различные примесные ионы (например, Тl в КСl) образуют центры люминесценции в кристаллофосфорах. Они дают электронно-колебательные (вибронные) спектры. Если электрон-фононное (вибронное) взаимодействие в дефектном центре слабое, то в спектре появляется интенсивная узкая бесфононная линия (оптический аналог линии Мёссбауэра эффекта), к которой примыкает «фононное крыло» со структурой, отражающей особенности динамики кристалла с примесью (рис. 3). С ростом вибронного взаимодействия интенсивность бесфононной линии падает. Сильная вибронная связь приводит к широким бесструктурным полосам. Поскольку часть энергии возбуждения в процессе колебательной релаксации до излучения рассеивается в остальном кристалле, максимум полосы люминесценции лежит по длинноволновую сторону от полосы поглощения (правило Стокса). Иногда к моменту испускания светового кванта в центре не успевает установиться равновесное распределение по колебательным подуровням, при этом возможна «горячая» люминесценция.