Изменить стиль страницы

  Вращение С. вокруг оси происходит в том же направлении, что и вращение Земли, в плоскости, наклоненной на 7°15' к плоскости орбиты Земли (эклиптике). Скорость вращения определяется по видимому движению различных деталей в атмосфере С. и по сдвигу спектральных линий в спектре края диска С. вследствие эффекта Доплера. Таким образом было обнаружено, что период вращения С. неодинаков на разных широтах. Положение различных деталей на поверхности С. определяется с помощью гелиографических координат, отсчитываемых от солнечного экватора (гелиографическая широта) и от центрального меридиана видимого диска С. или от некоторого меридиана, выбранного в качестве начального (т. н. меридиана Каррингтона). При этом считают, что С. вращается как твёрдое тело. Положение начального меридиана приводится в Астрономических ежегодниках на каждый день. Там же приводятся сведения о положении оси С. на небесной сфере. Один оборот относительно Земли точки с гелиографической широтой 17° совершают за 27,275 сут (синодический период). Время оборота на той же широте С. относительно звёзд (сидерический период) — 25,38 сут. Угловая скорость вращения w для сидерического вращения изменяется с гелиографической широтой j по закону: w = 14°, 44—3° sin2j в сутки. Линейная скорость вращения на экваторе С. — около 2000 м/сек.

  С. как звезда является типичным жёлтым карликом и располагается в средней части главной последовательности звёзд на Герцшпрунга — Ресселла диаграмме. Видимая фотовизуальная звёздная величина С. равна — 26,74, абсолютная визуальная звёздная величина Mv равна + 4,83. Показатель цвета С. составляет для случая синей (В) и визуальной (V) областей спектра MB — MV = 0,65. Спектральный класс С. G2V. Скорость движения относительно совокупности ближайших звёзд 19,7×103 м/сек. С. расположено внутри одной из спиральных ветвей нашей Галактики на расстоянии около 10 кпс от её центра. Период обращения С. вокруг центра Галактики около 200 млн. лет. Возраст С. — около 5×109 лет.

  Внутреннее строение С. определено в предположении, что оно является сферически симметричным телом и находится в равновесии. Уравнение переноса энергии, закон сохранения энергии, уравнение состояния идеального газа, закон Стефана — Больцмана и условия гидростатического, лучистого и конвективного равновесия вместе с определяемыми из наблюдений значениями полной светимости, полной массы и радиуса С. и данными о его химическом составе дают возможность построить модель внутреннего строения С. Полагают, что содержание водорода в С. по массе около 70%, гелия около 27%, содержание всех остальных элементов около 2,5%. На основании этих предположений вычислено, что температура в центре С. составляет 10—15×106К, плотность около 1,5105 кг/м3, давление 3,41016 н/м2 (около 31011 атмосфер). Считается, что источником энергии, пополняющим потери на излучение и поддерживающим высокую температуру С., являются ядерные реакции, происходящие в недрах С. Среднее количество энергии, вырабатываемое внутри С., составляет 1,92 эрг на г в сек. Выделение энергии определяется ядерными реакциями, при которых водород превращается в гелий. На С. возможны 2 группы термоядерных реакций такого типа: т. н. протон-протонный (водородный) цикл и углеродный цикл (цикл Бете). Наиболее вероятно, что на С. преобладает протон-протонный цикл, состоящий из 3 реакций, в первой из которых из ядер водорода образуются ядра дейтерия (тяжёлый изотоп водорода, атомная масса 2); во второй из ядер дейтерия образуются ядра изотопа гелия с атомной массой 3 и, наконец, в третьей из них образуются ядра устойчивого изотопа гелия с атомной массой 4.

  Перенос энергии из внутренних слоев С. в основном происходит путём поглощения электромагнитного излучения, приходящего снизу, и последующего переизлучения. В результате понижения температуры при удалении от центра С. постепенно увеличивается длина волны излучения, переносящего большую часть энергии в верхние слои (см. Вина закон излучения). Перенос энергии движением горячего вещества из внутренних слоев, а охлажденного внутрь (конвекция) играет существенную роль в сравнительно более высоких слоях, образующих конвективную зону С., которая начинается на глубине порядка 0,2 солнечных радиуса и имеет толщину около 108 м. Скорость конвективных движений растет с удалением от центра С. и во внешней части конвективной зоны достигает (2—2,5)×103 м/сек. В ещё более высоких слоях (в атмосфере С.) перенос энергии опять осуществляется излучением. В верхних слоях атмосферы С. (в хромосфере и короне) часть энергии доставляется механическими и магнитогидродинамическими волнами, которые генерируются в конвективной зоне, но поглощаются только в этих слоях. Плотность в верхней атмосфере очень мала, и необходимый отвод энергии за счёт излучения и теплопроводности возможен только, если кинетическая температура этих слоев достаточно велика. Наконец, в верхней части солнечной короны большую часть энергии уносят потоки вещества, движущиеся от С., т. н. солнечный ветер. Температура в каждом слое устанавливается на таком уровне, что автоматически осуществляется баланс энергии: количество приносимой энергии за счёт поглощения всех видов излучения, теплопроводностью или движением вещества равно сумме всех энергетических потерь слоя.

  Полное излучение С. определяется по освещённости, создаваемой им на поверхности Земли, — около 100 тыс. лк, когда С. находится в зените. Вне атмосферы на среднем расстоянии Земли от С. освещённость равна 127 тыс. лк. Сила света С. составляет 2,84×1027 световое количество энергии, приходящее в 1 мин на площадку в 1 см3, поставленную перпендикулярно солнечным лучам за пределами атмосферы на среднем расстоянии Земли от С., называют солнечной постоянной. Мощность общего излучения С. — 3,83×1026 вт, из которых на Землю попадает около 2×1017 вт, средняя яркость поверхности С. (при наблюдении вне атмосферы Земли) — 1,98×109 нт, яркость центра диска С. — 2,48×109 нт. Яркость диска С. уменьшается от центра к краю, причём это уменьшение зависит от длины волны, так что яркость на краю диска С., например для света с длиной волны 3600 Å, составляет около 0,2 яркости его центра, а для 5000 Å — около 0,3 яркости центра диска С. На самом краю диска С. яркость падает в 100 раз на протяжении менее одной секунды дуги, поэтому граница диска С. выглядит очень резкой (рис. 1).

  Спектральный состав света, излучаемого С., т. е. распределение энергии в спектре С. (после учёта влияния поглощения в земной атмосфере и влияния фраунгоферовых линий), в общих чертах соответствует распределению энергии в излучении абсолютно чёрного тела с температурой около 6000 К. Однако в отдельных участках спектра имеются заметные отклонения. Максимум энергии в спектре С. соответствует длине волны 4600 Å. Спектр С. — это непрерывный спектр, на который наложено более 20 тыс. линий поглощения (фраунгоферовых линий). Более 60% из них отождествлено со спектральными линиями известных химических элементов путём сравнения длин волн и относительной интенсивности линии поглощения в солнечном спектре с лабораторными спектрами. Изучение фраунгоферовых линий даёт сведения не только о химическом составе атмосферы С., но и о физических условиях в тех слоях, в которых образуются те или иные линии поглощения. Преобладающим элементом на С. является водород. Количество атомов гелия в 4—5 раз меньше, чем водорода. Число атомов всех других элементов вместе взятых, по крайней мере, в 1000 раз меньше числа атомов водорода. Среди них наиболее обильны кислород, углерод, азот, магний, кремний, сера, железо и др. В спектре С. можно отождествить также линии, принадлежащие некоторым молекулам и свободным радикалам: OH, NH, CH, CO и др.