Пинцет
Пинце'т (от франц. pincette — щипчики), медицинский инструмент, состоящий из двух пружинящих браншей для захватывания и удерживания тканей, перевязочных материалов и пр. В зависимости от концов браншей и назначения различают П. хирургические, анатомические, лапчатые и др.
Пинцировка
Пинциро'вка (от нем. pinzieren — удалять конец), прищипка, удаление верхушки молодого растущего побега. Применяется в плодоводстве (яблоня, персик, реже груша, абрикос) при формировании кроны растений и регулировании роста побегов или плодоношения деревьев. П. проводят вручную или секатором (садовыми ножницами), оставляя часть побега с 7—10 листьями. Благодаря П. задерживается рост прищипнутых побегов, усиливается рост неприщипнутых, предотвращается загущение кроны, ускоряется процесс одревеснения побегов, происходит превращение ростовых побегов в плодовые. Деревья, к которым применяют П., нуждаются в меньшей весенней обрезке на следующий год. В овощеводстве П. применяется для огурцов (в парниках и теплицах), баклажана, брюссельской капусты и семенных растений свёклы и моркови (в открытом грунте).
Пинчеры
Пи'нчеры (нем. Pinscher), группа пород собак, используемых в основном для охранной службы и борьбы с мелкими хищниками (хорьки, ласки и др.). Породы П.: доберман-пинчер; короткошёрстный П. (собака крепкой конституции, чёрного окраса, рост 43—48 см); жесткошёрстный П. (шнауцер; рост 40—50 см); карликовый П. (рост 25—31 см). У П. обычно обрезают уши и хвост. Родина П.— Германия. Распространены во многих странах. В СССР разводятся доберман-пинчер, ризеншнауцер и др.
Пинчук Вениамин Борисович
Пинчу'к Вениамин Борисович [родился 17(30).11.1908, поселке Кутузове, ныне Житомирской области Украинской ССР], советский скульптор, народный художник СССР (1969), действительный член АХ СССР (1970). Член КПСС с 1942. Учился в московском Вхутеине (1928—1930) у В. И. Мухиной и в АХ в Ленинграде (1930—32) у А. Т. Матвеева. Преподаёт в институте живописи, скульптуры и архитектуры им. И. Е. Репина в Ленинграде (с 1948; профессор с 1962). Творчество П. носит гражданственный характер; его портретам и памятникам свойственны простота композиции и строгость четко моделированных форм. Произведения: «В. И. Ленин в Разливе» (гипс, 1935, Центральный музей В. И. Ленина, Москва); группа «В. И. Ленин и И. В. Сталин в Горках» (соавтор Р. К. Таурит: гипс, 1949; Государственная премия СССР, 1950); бюст М. И. Калинина (мрамор, 1950, Русский музей, Ленинград); памятник В. И. Ленину в Московском Кремле (бронза, гранит, лабрадорит, 1967, архитектор С. Б. Сперанский;см. илл. и Красноярске (бронза, гранит, 1970).
Лит.: Мямлин И. Г., Скульптор В. Б. Пинчук, Л., 1965.
Памятник С. М. Кирову у Кировского завода. Бронза, гранит. 1935—39. Скульптор В. Б. Пинчук.
Памятник В. И. Ленину. Бронза, гранит, лабрадорит. 1967. Скульптор В. Б. Пинчук, архитектор С. Б. Сперанский.
В. Б. Пинчук.
Пинч-эффект
Пинч-эффе'кт (от англ. pinch — сужение, сжатие), эффект самостягивания разряда, свойство электрического токового канала в сжимаемой проводящей среде уменьшать своё сечение под действием собственного, порождаемого самим током, магнитного поля. Впервые это явление описано в 1934 американским учёным У. Беннетом применительно к потокам быстрых заряженных частиц в газоразрядной плазме. Термин «П.-э.» введён в 1937 английским физиком Л. Тонксом при исследовании дугового разряда.
Механизм П.-э. проще всего понять на примере тока I, текущего вдоль оси цилиндра, заполненного проводящей средой. Силовые линии магнитного поля, создаваемого I, имеют вид концентрических окружностей, плоскости которых перпендикулярны оси цилиндра. Электродинамическая сила, действующая на единицу объёма проводящей среды с плотностью тока j, в СГС системе единиц равна 1/c × [jb] и направлена к оси цилиндра, стремясь сжать среду. Возникающее состояние и есть П.-э. (Здесь квадратные скобки обозначают векторное произведение; с — скорость света в вакууме; В — магнитная индукция в рассматриваемом единичном объёме.) П.-э. можно считать также простым следствием Ампера закона о магнитном притяжении отдельных параллельных токовых нитей (элементарных токовых трубок), совокупностью которых является токовый цилиндр. Магнитному сжатию препятствует газокинетическое давление проводящей среды, обусловленное тепловым движением её частиц; силы этого давления направлены от оси токового канала. Однако при достаточно большом токе перепад магнитного давления становится больше газокинетического и токовый канал сжимается — возникает П.-э.
Для П.-э. необходимо примерное равенство концентраций носителей зарядов противоположного знака в среде. В потоках же носителей зарядов одного знака электрическое поле пространственного заряда эффективно препятствует сжатию тока. Прохождение достаточно больших токов через газ сопровождается его переходом в состояние полностью ионизованной плазмы, состоящей из заряженных частиц обоих знаков. П.-э. в этом случае отжимает плазменный шнур (токовый канал) от стенок камеры, в которой происходит разряд. Т. о. создаются условия для магнитной термоизоляции плазмы. Этим свойством мощных самосжимающихся разрядов (их называют пинчами) объясняется возникший в связи с проблемой управляемого термоядерного синтеза (УТС) интерес к П.-э., как к наиболее простому и обнадёживающему механизму удержания высокотемпературной плазмы.
Условия, при которых газокинетическое давление плазмы nk (Te + Ti) становится равным магнитному давлению поля тока I, описываются соотношением Беннета: (2I/cr)2/8p = nk (Te + Ti). Здесь n — число частиц в единице объёма, r — радиус пинча; Te и Ti — электронная и ионная температуры, соответственно; n — число электронов в единице объёма (равное из условия квазинейтральности плазмы числу ионов); k — Больцмана постоянная. Из формулы Беннета следует, что для достижения минимальной температуры (Т~108К), при которой термоядерный синтез может представлять интерес как источник энергии, требуется хотя и большой, но вполне осуществимый ток ~ 106 а. Исследование пинчей в дейтерии началось в 1950—51 одновременно в СССР, США и Великобритании в рамках национальных программ по УТС. При этом основное внимание уделялось двум типам пинчей — линейному и тороидальному. Предполагалось, что плазма в них при протекании тока будет нагреваться не только за счёт её собственного электрического сопротивления (джоулев нагрев), но и при так называемом адиабатическом (т. е. происходящем без обмена энергией с окружающей средой) сжатии пинча. Однако в первых же экспериментах выяснилось, что П.-э. сопровождается развитием различных плазменных неустойчивостей (см. Магнитные ловушки). Образовывались местные пережатия («шейки») пинча, его изгибы и винтовые возмущения («змейки»). Нарастание этих возмущений происходит чрезвычайно быстро и ведёт к разрушению пинча (его разрыву или выбрасыванию плазмы на стенки камеры). Оказалось, что простейшие пинчи подвержены практически всем видам неустойчивостей высокотемпературной плазмы и могут служить как для их изучения, так и для испытания разных способов стабилизации плазменного шнура. Ток ~ 106 а в установках с линейным пинчём получают при разряде на газовый промежуток мощных конденсаторных батарей. Скорости нарастания тока в отдельных случаях ~1012 а/сек. При этом наиболее существенным оказывается не джоулев нагрев, а электродинамическое ускорение к оси токового шнура его тонкой наружной оболочки (скин-слоя; см. Скин-эффект), сопровождающееся образованием мощной сходящейся к оси ударной волны. Превращение накопленной такой волной энергии в тепловую создаёт плазму с температурой, намного более высокой, чем мог бы дать джоулев нагрев. С др. стороны, преобразование в пинче энергии электрического тока в тепловую становится значительно эффективнее, когда определяющий вклад в электрическое сопротивление плазмы начинает давать её турбулентность, возникающая при развитии так называемых микронеустойчивостей (см. Плазма).