Изменить стиль страницы

Логика отношений

Ло'гика отноше'ний, раздел логики, посвященный изучению отношений между объектами различной природы. В естественных языках отношения выражаются сказуемыми предложений, имеющих более одного подлежащего (или подлежащее и одно или несколько дополнений). В зависимости от числа этих подлежащих (или подлежащих и дополнений) говорят о бинарных (двуместных, двучленных), тернарных (трёхместных, трёхчленных), вообще n-арных (n-местных, n-членных) отношениях. В формализованных языках математической логики аналогом понятия отношения служит понятие (многоместного) предиката; соответственно современная модификация Л. о. называется логикой предикатов. На языке теории множеств и алгебры n-местным отношением называется класс упорядоченных систем из n элементов; если, например, упорядоченная пара <х, у> принадлежит некоторому отношению R, то говорят, что х находится в отношении R к у. Для понимаемых таким образом отношений определяются понятия области определения данного отношения (множество первых элементов входящих в него пар) и области значений (множество их вторых элементов) и аналогично тому, как это делается в теории множеств, вводятся операции объединения (суммы) и пересечения (произведения) отношений. В получающейся «алгебре отношений» (термин, также употребляемый как синоним термина «Л. о.») роль «единицы» играют т. н. отношения эквивалентности, т. е. отношения, обладающие свойствами рефлексивности (для всех х имеет место xRx), симметричности (из xRy следует yRx) и транзитивности (из xRy и yRz следует xRz). К этому важнейшему классу отношений принадлежит, например, равенство чисел, подобие многоугольников, параллельность прямых и т. п. Другой важнейший класс отношений — т. н. отношения порядка (рефлексивные и транзитивные, но несимметричные — «нестрогий» порядок; транзитивные, но нерефлексивные и несимметричные — «строгий» порядок; примерами могут соответственно служить отношения «не больше» и «меньше» для чисел или отрезков). В терминах отношений (и с использованием аппарата алгебры отношений) вводятся многие важнейшие понятия логики и математики, в частности понятия функции и операции.

  Ю. А. Гастев.

Логика предикатов

Ло'гика предика'тов, раздел математической логики, изучающий логические законы, общие для любой области объектов исследования (содержащей хоть один объект) с заданными на этих объектах предикатами (т. е. свойствами и отношениями). В результате формализации Л. п. принимает вид различных исчислений. Простейшими логическими исчислениями являются исчисления высказываний. В более сложных исчислениях предикатов описываются логические законы, связывающие объекты исследования с отношениями между этими объектами.

  В классическом исчислении предикатов употребляются следующие знаки: 1) т. н. предметные переменные — буквы х, у, z,..., которые содержательно рассматриваются как неопределённые имена объектов исследования теории; 2) предикатные переменные — знаковые комплексы вида Pm, Qn, Rl,... (m, n, l — натуральные числа), причём, например, Qn означает произвольное n-местное отношение между объектами; 3) знаки для логических связок: конъюнкции &, дизъюнкции

Большая Советская Энциклопедия (ЛО) i-images-125757090.png
, импликации É, отрицания ù, означающие соответственно «... и...», «... или...», «если..., то...», «неверно, что...»; 4) знаки для кванторов " (квантор всеобщности), 3 (квантор существования), означающие соответственно «для всех...» и «существует... такое, что...»; 5) запятая, скобки (для уточнения строения формул).

  Если Qn есть n-местная предикатная переменная, a x1,..., xn — предметные переменные, то выражение Qn (x1,..., xn) есть, по определению, атомарная (элементарная) формула. Индекс n у предикатной переменной в атомарной формуле обычно опускается. Содержательно Q (x1,..., xn) означает высказывание, гласящее, что объекты x1,..., xn связаны отношением Q. Формулами считаются атомарные формулы, а также выражения, получаемые из них посредством следующих операций образования новых формул из уже полученных: 1) если j и

Большая Советская Энциклопедия (ЛО) i-images-148010698.png
 — формулы, то (j&
Большая Советская Энциклопедия (ЛО) i-images-103808220.png
), (j
Большая Советская Энциклопедия (ЛО) i-images-198908768.png
Большая Советская Энциклопедия (ЛО) i-images-120604141.png
), (jÉ
Большая Советская Энциклопедия (ЛО) i-images-190894825.png
) и ùj — также формулы; 2) если j — формула и х — предметная переменная, то "xj, $xj — формулы. Определением формулы заканчивается описание языка исчисления предикатов.

  Вхождение предметной переменной х в формулу j называется связанным, если х входит в часть j вида $xj или "xj или стоит непосредственно после знака квантора. Несвязанные вхождения переменной в формулу называются свободными. Если найдётся хоть одно свободное вхождение х в j, то говорят, что переменная х входит свободно в j или является параметром j. Интуитивно говоря, формула j с параметрами выражает некоторое условие, которое превращается в конкретное высказывание, если (конкретизировав предварительно область объектов) приписать определённые значения входящим в формулу параметрам и предикатным буквам. Связанные же переменные не имеют самостоятельного значения и служат (вместе с соответствующими кванторами) для обозначения общих утверждений или утверждений существования. Если j — формула, а х и у — предметные переменные, то через j(х½у) будет обозначаться результат замещения всех свободных вхождений x в j на y (а если при этом у оказалось на месте х в части формулы вида "y

Большая Советская Энциклопедия (ЛО) i-images-109444908.png
или $y
Большая Советская Энциклопедия (ЛО) i-images-146681379.png
, то следует дополнительно заменить все связанные вхождения у в эту часть на переменную, не входящую в j; это делается для того, чтобы не допустить искажения смысла j при замене х на у).

  Пусть j,

Большая Советская Энциклопедия (ЛО) i-images-121948282.png
, h — произвольные формулы, а х и у — предметные переменные. Тогда формулы следующих видов принимаются в качестве аксиом классического исчисления предикатов:

  1. (jÉ(

Большая Советская Энциклопедия (ЛО) i-images-167356212.png
Éh)),

  2. ((jÉ(

Большая Советская Энциклопедия (ЛО) i-images-132989535.png
Éh))É((jÉ
Большая Советская Энциклопедия (ЛО) i-images-172086355.png
)É(jÉh))),

  3. ((j&

Большая Советская Энциклопедия (ЛО) i-images-114309335.png
)Éj),

  4. ((j&

Большая Советская Энциклопедия (ЛО) i-images-123041837.png
Большая Советская Энциклопедия (ЛО) i-images-197888819.png
),

  5. (jÉ(

Большая Советская Энциклопедия (ЛО) i-images-188573560.png
É(j&
Большая Советская Энциклопедия (ЛО) i-images-143362658.png
))),

  6. ((jÉh)É((

Большая Советская Энциклопедия (ЛО) i-images-189964488.png
Éh)É((j
Большая Советская Энциклопедия (ЛО) i-images-105838613.png
Большая Советская Энциклопедия (ЛО) i-images-126544094.png
)Éh))),