Изменить стиль страницы

  Л. н. классифицируют по областям применения (осветительные общего назначения, для фар и др.), по основной конструктивной форме и светотехническим свойствам колбы (зеркальные лампы, декоративные, с рассеивающим покрытием и др.), по форме тела накала (лампы с плоской спиралью, биспиралью и др.). По габаритным размерам различают сверхминиатюрные, миниатюрные, малогабаритные, нормальные и крупногабаритные Л. н.; например, к сверхминиатюрным лампам относятся Л. н. с длиной < 10 мм и диаметром <6 мм, у крупногабаритных ламп длина > 175 мм, а диаметр >80 мм.

  Л. н. изготовляются на напряжения от долей до сотен в, мощностью до десятков квт (рис. 2). Например, прожекторная лампа мощностью 10 квт имеет длину 475 мм и диаметр 275 мм. Увеличение напряжения на Л. н. против номинального на 1% повышает световой поток на 4%, но снижает срок службы на 15%. Кратковременное включение на напряжение, превышающее номинальное на 15%. выводит лампу из строя. Срок службы Л. н. колеблется от 5 ч (например, самолётные фарные лампы) до 1000 ч и более (например, транспортные лампы), поэтому лампы должны устанавливаться в местах, обеспечивающих лёгкость их замены. Световая отдача Л. н. зависит от конструкции, напряжения, мощности и продолжительности горения и составляет 10—35 лм/вт. В табл. 1 и 2 приводятся значения световой отдачи некоторых ламп различных конструкций.

Табл. 1. — Световая отдача некоторых ламп

Тип лампы лм/вт Примечание
Керосиновая лампа Лампа накаливания:   с угольной нитью   с танталовой нитью   с вольфрамовой нитью (вакуумная)   с вольфрамовой биспиралью (газополная,   технический криптон)   с вольфрамрвой биспиралью (галогенная)   с вольфрамовой плоской спиралью   (галогенная) <1 2—3 7 8—9 12,5—13,5 22—27 34 5 Общее освещение зданий, средств транспорта Специальные оптические приборы Малогабаритные кинопроекторы

Табл. 2. — Световая отдача осветительных ламп с криптоновым наполнением (при продолжительности горения 1000 ч)

Напряжение втлм/вт
127 127 127 220 220 220 60 75 100 60 75 100 13,4 14,4 15,6 11,7 12,7 13,8

  По световой отдаче Л. и. уступают газоразрядным источникам света, однако Л. н. проще в эксплуатации (не требуют пусковых устройств и сложной арматуры) и для них практически нет ограничений по напряжению и мощности. Ежегодное производство Л. н. в мире достигает 10 млрд. штук, количество разновидностей более 2 тыс.

  Лит.: Скобелев В. М., Лампы накаливания, в кн.: Справочная книга по светотехнике, М., 1956; Ульмишек Л. Г., Производство электрических ламп накаливания, 5 изд., М. — Л., 1966; Гуторов М. М., Основы светотехники и источники света, М., 1968.

  В. М. Скобелев.

Большая Советская Энциклопедия (ЛА) i009-001-204645809.jpg

Рис. 2. Электрические лампы накаливания: а — кинопроекционная (напряжение 40 в, мощность 750 вт); б — рудничная (4 в; 3,75 вт); в — двухнитевая автомобильная галонная (12 в; 55 вт).

Большая Советская Энциклопедия (ЛА) i010-001-272214489.jpg

Рис. 1. Схема электрической лампы накаливания: 1 — стеклянная колба; 2 — тело накала; 3 — держатели; 4 — штенгель; 5 — вводы: 6 — лопатка; 7 — цоколёвочная мастика; 8 — носик; 9 — цоколь.

Лампа накачки

Ла'мпа нака'чки, импульсный источник света, предназначенный для оптической накачки лазеров. Л. н. помещают в непосредственной близости от активной среды и для лучшего использования света окружают отражающим кожухом.

Лампа обратной волны

Ла'мпа обра'тной волны' (ЛОВ), лампа с обратной волной, электровакуумный прибор, в котором для генерирования электромагнитных колебаний СВЧ используется взаимодействие электронного потока с электромагнитной волной, бегущей по замедляющей системе в направлении, обратном направлению движения электронов. Л. о. в. применяются в широкодиапазонных сигнал- и свип-генераторах для радиотехнических измерений и радиоспектроскопии, в гетеродинах быстро перестраиваемых приёмников, в задающих генераторах передатчиков с быстрой перестройкой частоты и т. д. Явление генерирования колебаний СВЧ в результате взаимодействия электронного потока и обратной волны обнаружил и описал американский физик С. Мильман (S. Millman) в 1950. Название «Л. о. в.» предложили американские учёные Р. Компфнер (R. Kompfner) и Н. Уильямс (N. Williams) в 1953, впервые исследовавшие работу ламп этого типа.

  В Л. о. в. созданный электронной пушкой прямолинейный поток электронов проходит сквозь замедляющую систему, образованную рядом встречных пластин, и возбуждает в ней электромагнитную волну, бегущую в направлении, обратном направлению движения электронов. Под влиянием электрического поля бегущей волны в электронном потоке образуются сгустки электронов. Каждый сгусток поочерёдно проходит зазоры между пластинами замедляющей системы, в каждом из которых встречает очередную пучность напряжения бегущей волны и тормозится её электрическим полем (условие генерирования колебаний). Это условие выполняется, когда время пролёта сгустка из одного зазора в соседний немного менее половины периода колебаний. Повышение (понижение) напряжения между катодом электронной пушки и замедляющей системой уменьшает (увеличивает) это время пролёта и, следовательно, уменьшает (удлиняет) период генерируемых колебаний. Для фокусировки электронного потока в Л. о. в. применяют постоянное магнитное поле, направленное по оси потока, или электростатическую систему фокусировки.

  Л. о. в. выпускаются с мощностями колебаний от 5 до 100 мвт на частоты от 1 до 1500 Ггц и имеют диапазон перестройки частоты напряжением от 10% до октавы, кпд порядка 1%.

  Кроме рассмотренных Л. о. в., выпускаются Л. о. в. магнетронного типа — ЛОВМ (см. Магнетронного типа приборы). Большинство их генерируют колебания с частотами от 0,5 до 18 Ггц мощностью от 0,1 до 1 квт и имеют диапазон перестройки частот около 30%, кпд от 6 до 50%. ЛОВМ применяются для генерирования радиопомех, в измерительной аппаратуре, системах связи и т. д.

  Лит.: Альтшулер Ю. Г., Татаренко А. С., Лампы малой мощности с обратной волной, М., 1963; Лебедев И. В., Техника и приборы сверхвысоких частот, т. 2, М. — Л., 1964.

  В. Ф. Коваленко.