Изменить стиль страницы

  Очень многие исследования Г. остались неопубликованными и в виде очерков, незаконченных работ, переписки с друзьями входят в его научное наследие. Вплоть до 2-й мировой войны оно тщательно разрабатывалось Гёттингенским учёным обществом, которое издало 12 тт. сочинений Г. Наиболее интересными в этом наследии являются дневник Г. и материалы по неевклидовой геометрии и теории эллиптических функций. Дневник содержит 146 записей, относящихся к периоду от 30 марта 1796, когда 19-летний Г. отметил открытие построения правильного 17-угольника, по 9 июля 1814. Эти записи дают отчётливую картину творчества Г. в первой половине его научной деятельности; они очень кратки, написаны на латинском языке и излагают обычно сущность открытых теорем. Материалы, относящиеся к неевклидовой геометрии, обнаруживают, что Г. пришёл к мысли о возможности построения наряду с евклидовой геометрией и геометрии неевклидовой в 1818, но опасение, что эти идеи не будут поняты, и, по-видимому, недостаточное сознание их научной важности были причиной того, что Г. их не разрабатывал далее и не опубликовывал. Более того, он категорически запрещал опубликовывать их тем, кого посвящал в свои взгляды. Когда вне всякого отношения к этим попыткам Г. неевклидова геометрия была построена и опубликована Н. И. Лобачевским , Г. отнёсся к публикациям Лобачевского с большим вниманием, был инициатором избрания его член-корреспондентом Гёттингенского учёного общества, но своей оценки великого открытия Лобачевского по существу не дал. Архивы Г. содержат также обильные материалы по теории эллиптических функций и своеобразную их теорию; однако заслуга самостоятельной разработки и публикации теории эллиптических функций принадлежит К. Якоби и Н. Абелю .

  Соч.: Werke, Bd 1 —, Gött., 1908 —; в рус. пер. — Общие исследования о кривых поверхностях, в сборнике: Об основаниях геометрии, 2 изд., Каз., 1895; Теоретическая астрономия. (Лекции, читанные в Гёттингене в 1820—26 гг., записанные Купфером), в кн.: Крылов А. Н., Собр. трудов, т. 6, М. — Л., 1936; Письма П. С. Лапласа, К. Ф. Гаусса, Ф. В. Бесселя и др. к академику Ф. И. Шуберту, в сборнике: Научное наследство, т 1, М. — Л., 1948, с. 801—22.

  Лит.: Клейн Ф., Лекции о развитии математики в 19 столетии, пер. с нем., ч. 1, М. — Л., 1937: Карл Фридрих Гаусс. Сб. ст., М., 1956.

Большая Советская Энциклопедия (ГА) i009-001-205287264.jpg

К. Ф. Гаусс.

Гаусса - Крюгера проекция

Га'усса — Крю'гера прое'кция (иногда проекция Гаусса), одна из геодезических проекций .

Гаусса постоянная

Га'усса постоя'нная , одна из фундаментальных астрономических постоянных (обозначается k ). Первоначально определена К. Гауссом как приближённое значение корня квадратного из гравитационной постоянной k2 , входящей в формулу задачи двух тел (в небесной механике):

 

Большая Советская Энциклопедия (ГА) i-images-171027622.png

  которая связывает массы Солнца mS , Земли mT и Луны mL с периодом обращения Р системы Земля—Луна по эллиптической орбите вокруг Солнца и с большой полуосью а этой орбиты, причём массу Солнца и указанную большую полуось а Гаусс принимал в качестве единиц массы и длины, а в качестве единицы времени — средние солнечные сутки. При принятых в его время значениях Р и отношений mT /mS , mL /mT Гаусс нашёл:

  k = 0,01720209895.

  Это значение k (которое считается точным) входит в современную систему фундаментальных астрономических постоянных и называется гауссовой постоянной (или Г. п.). Единица расстояния, соответствующая этому значению k и формуле (1), при условии, что единицей времени являются эфемеридные сутки (см. Время ), называют астрономической единицей (а. е.). Последняя несколько отличается от большей полуоси а орбиты системы Земля — Луна, которая в соответствии с формулой (1) и современными значениями Р, mT /mS , тL /mT составляет 1,000000032 a. e .

  Ю. А. Рябов.

Гаусса принцип

Га'усса при'нцип , принцип наименьшего принуждения, один из вариационных принципов механики , согласно которому для механической системы с идеальными связями (см. Связи механические ) из всех кинематически возможных, т. e. допускаемых связями, движении, начинающихся из данного положения и с данными начальными скоростями, истинным будет то движение, для которого «принуждение» Z является в каждый момент времени наименьшим. Установлен К. Гауссом (1829).

  Физическая величина, называемая «принуждением», вводится следующим образом. Свободная материальная точка с массой m при действии на неё заданной силы F будет иметь ускорение F/m ; если же на точку наложены связи, то её ускорение при действии той же силы F станет равным какой-то др. величине w . Тогда отклонение точки от свободного движения, вызванное действием связи, будет зависеть от разности этих ускорений, т. e. от F/m—w . Величину Z , пропорциональную квадрату этой разности, и называют «принуждением». Для одной точки

 

Большая Советская Энциклопедия (ГА) i-images-194237577.png

  а для механической системы Z равняется сумме таких величин.

  Рассмотрим, например, точку, которая начинает двигаться вдоль гладкой наклонной плоскости из положения А без начальной скорости (см. рис. ). Для неё кинематически возможно любое перемещение АВ, AB1 , AB2 ,... в этой плоскости с какими-то ускорениями w, w1 , w2 ,..; при свободном же падении точка совершила бы перемещение AC вдоль вертикали с ускорением g . Тогда отклонения точки от свободного движения изобразятся отрезками CB, CB1 , CB2 ,..., наименьшим из которых будет отрезок CB , перпендикулярный к наклонной плоскости. Следовательно, «принуждение» Z , пропорциональное квадратам CB, CB1 , CB2 ,..., будет наименьшим при движении вдоль линии наименьшего ската AD . Это и будет истинное движение точки, происходящее с ускорением w = gsina.

  Г. п. пользуются для составления уравнений движения механических систем и изучения свойств этих движений.

  Лит . см. при ст. Вариационные принципы механики .

Большая Советская Энциклопедия (ГА) i010-001-260352710.jpg

Рис. к ст. Гаусса принцип.