В. к. выпускают в ряде стран: СКМВП (СССР), бунатекс VP (ФРГ), филпрен VP (США). В. к. применяют в производстве шин, а также масло- и морозостойких уплотнительных деталей в авиации, на автотранспорте и в других отраслях промышленности. Латексы сополимеров бутадиена и 2-винилпиридина используют для пропитки шинного корда.
Лит . см. при ст. Каучуки синтетические .
Винилхлорид
Винилхлори'д, хлористый винил, CH2 = CHCl; бесцветный газ со слабым запахом, напоминающим запах хлороформа; t кип —13,8°С; t пл —153,8°С, плотность при —15°С 0,9730 г/см 3 . В. плохо растворим в воде, в органических растворителях — хорошо; пределы взрываемости В. в смеси с воздухом 4—22% (по объёму). По двойной связи к В. легко присоединяются галогены, галогеноводороды и др.:
В. полимеризуется и сополимеризуется с винилиденхлоридом, винилацетатом и др. В промышленности В. получают парофазным (реже жидкофазным) гидрохлорированием ацетилена в присутствии HgCl2 на угле или дегидрохлорированием дихлорэтана:
Полученный продукт, содержащий не менее 99% В., самопроизвольно не полимеризуется. В. широко применяют для производства поливинилхлорида и сополимеров с другими винильными соединениями — важных материалов, находящих применение в самых различных отраслях промышленности.
Винипласт
Винипла'ст, пластическая масса на основе поливинилхлорида, не содержащая пластификатора. Кроме поливинилхлорида, в состав В. входят стабилизаторы (предотвращающие разрушение материала при переработке и эксплуатации) и смазывающие вещества (облегчающие переработку). Иногда в состав В. вводят красители (при получении цветных изделий), наполнители (для снижения стоимости, изменения физико-механических свойств) и модификаторы (для улучшения некоторых физических свойств).
В. получают смешением составных частей в смесителях различного типа. Затем смесь либо непосредственно перерабатывают в изделия, либо предварительно получают из неё полуфабрикаты — гранулы, таблетки или провальцованную массу. Методы переработки В. зависят от вида вырабатываемого изделия: плёночный В. получают каландрированием провальцованной массы; гладкие листы — прессованием пакетов, собранных из плёнки, на этажных гидравлических прессах; мелкие изделия различного профиля — литьём под давлением из гранул на литьевых машинах, а также прессованием таблеток или порошкообразной смеси на вертикальных гидравлических прессах; трубы, профилированные изделия и волнистые листы — экструзией из гранул на шнековых установках; крупные изделия сложной конфигурации — вакуумформованием из листов на формовочных машинах.
В. — термопластичный непрозрачный материал; не горит и не имеет запаха; хорошо поддаётся различным видам механической обработки на обычных станках. В. легко сваривается (230—250°С) с помощью сварочного прутка и хорошо склеивается разнообразными видами клеев, приготовленных на основе поливинилхлорида и перхлорвиниловой смолы; сварные и клеевые соединения, прочность которых составляет 80—90% от прочности материала, хорошо поддаются механической обработке. В. можно также приклеивать к металлическим, бетонным и деревянным поверхностям. В. — хороший диэлектрик в пределах 20—80°С; при нагревании выше 80°С наступает резкое падение диэлектрических свойств. Материал устойчив к действию кислот, щелочей и алифатических углеводородов; неустойчив к действию ароматических и хлорированных углеводородов. Ниже приведены основные физ. свойства В.
Плотность, г/см 3 . . . . . . . . . 1,38—1,40
Прочность,
Мн/м 2 (кгс/см 2 ):
при растяжении . . . . . . 40—60 (400—600)
при сжатии . . . . . . . . . . 80—160(800—1600)
при изгибе . . . . . . . . . . 90—120(900—1200)
Модуль упругости,
Гн/м 2 (кгс/см 2 ) . . . . . . . . . . . 3—4 (30 000—40 000)
Относительное удлине-
ние, % . . . . . . . . . . . . . . . . 10—25
Твёрдость по Бринелю,
Мн/ м2 (кгс/мм 2 ) . . . . . . . . . . . 130—160 (13-16)
Теплостойкость по Мартен-
су, °С . . . . . . . . . . . . . . . . . 65—70
Температура размягчения
по Вика, °С . . . . . . . . . . . . . 75—90
Морозостойкость, °С . . . . . . . —10
Удельная теплоёмкость,
кдж/ (кг·К ) [ккал/ (г°·С )] . . . . . . . 1,13—2,14 [0,27—0,51]
Коэффициент теплопро-
водности, вт/ (м·К )
[ккал/ (м·ч·°С )] . . . . . . . . . . . . . 0,15—0,16 (0,13—0,14)
Температурный коэффици-
ент линейного расшире-
ния, °С-1 . . . . . . . . . . . . . . . . . . (65–80) · 10-6
Удельное электрическое со-
противление:
объёмное, Том/м
(ом·см ) . . . . . . . . . . . . . . . . . 10 (1015 )
поверхностное Том (ом ) . . . . . 100 (1014 )
Электрическая прочность
(при 20°С), Мв/м или
кв/мм . . . . . . . . . . . . . . . . . . 15—35
Диэлектрическая проницае-
мость:
при 50 гц . . . . . . . . . . . . . . . 4,1
при 800 гц . . . . . . . . . . . . . . 3,1—3,5
В. используют как коррозионностойкий конструкционный материал в химической промышленности (для изготовления ёмкостей, трубопроводов, вентиляционных установок, деталей химической аппаратуры, лабораторного оборудования, защиты электропроводов, футеровки стальных, бетонных и деревянных аппаратов), в системах водоснабжения, канализации, ирригации и мелиорации (трубы, фитинги и т.д.), в строительстве (отделочные материалы, кровельные листы, двери и т.п.). В. применяют также как упаковочный материал для бытовых товаров (сосуды, контейнеры, флаконы и т. и.).
Важнейшие фирменные названия В.: бреон; корвик (Великобритания); игелит (ГДР); винидур, декелит (ФРГ); винибан (Япония). Производство В. впервые было организовано в Германии в 30-х гг. 20 в.
Лит.: Щуцкий С. В., Пуркин В. С., Винипласт, М. — Л., 1959; Николаев А. Ф., Синтетические полимеры и пластические массы на их основе, М. — Л., 1967, с. 229; Справочник по пластическим массам, под ред. М. И. Гарбара [и др.], М., 1967.