Изменить стиль страницы

  Получение и применение. В промышленности металлический Б. и его соединения получают переработкой берилла в гидроокись Be (OH)2 или сульфат BeS04 . По одному из способов, измельченный берилл спекают с Na2 SiF6 , образующиеся фторбериллаты натрия Na2 BeF4 и NaBeF3 выщелачивают из смеси водой; при добавлении к этому раствору NaOH в осадок выпадает Be (OH)2 . По другому способу, берилл спекают с известью или мелом, спек обрабатывают серной кислотой; образующийся BeS04 выщелачивают водой и осаждают аммиаком Be (OH)2 . Более полная очистка достигается многократной кристаллизацией BeSO4 , из которого прокаливанием получают BeO. Известно также вскрытие берилла хлорированием или действием фосгена. Дальнейшая обработка ведётся с целью получения BeF2 или BeCl2 .

  Металлический Б. получают восстановлением BeF2 магнием при 900—1300°С или электролизом BeCl2 в смеси с NaCI при 350°С.

  Полученный металл переплавляют в вакууме. Металл высокой чистоты получают дистилляцией в вакууме, а в небольших количествах — зонной плавкой; применяют также электролитическое рафинирование.

  Из-за трудностей получения качественных отливок заготовки для изделий из Б. готовят методами порошковой металлургии . Б. измельчают в порошок и подвергают горячему прессованию в вакууме при 1140—1180°С. Прутки, трубы и др. профили получают выдавливанием при 800—1050°С (горячее выдавливание) или при 400—500 °С (тёплое выдавливание). Листы из Б. получают прокаткой горячепрессованных заготовок или выдавленных полос при 760—840°С. Применяют и др. виды обработки — ковку, штамповку, волочение. При механической обработке Б. пользуются твердосплавным инструментом.

  Сочетание малой атомной массы, малого сечения захвата тепловых нейтронов (0,009 барн на атом) и удовлетворительной стойкости в условиях радиации делает Б. одним из лучших материалов для изготовления замедлителей и отражателей нейтронов в атомных реакторах. В Б. выгодно сочетаются малая плотность, высокий модуль упругости, прочность, теплопроводность. По удельной прочности Б. превосходит все металлы. Благодаря этому в конце 50 — начале 60-х гг. Б. стали применять в авиационной, ракетной и космической технике и гироприборостроении. Однако высокая хрупкость Б. при комнатной температуре — главное препятствие к его широкому использованию как конструкционного материала.

  Б. входит в состав сплавов на основе Al, Mg, Cu и др. цветных металлов (см. Алюминиевые сплавы , Магниевые сплавы , Медные сплавы ).

  Некоторые бериллиды тугоплавких металлов рассматриваются как перспективные конструкционные материалы в авиа- и ракетостроении. Б. применяется также для поверхностной бериллизации стали. Из Б. изготовляют окна рентгеновских трубок, используя его высокую проницаемость для рентгеновских лучей (в 17 раз большую, чем у алюминия). Б. применяется в нейтронных источниках на основе радия, полония, актиния, плутония, т.к. он обладает свойством интенсивного излучения нейтронов при бомбардировке a-частицами. Б. и некоторые его соединения рассматриваются как перспективное твёрдое ракетное топливо с наиболее высокими удельными импульсами.

  Широкое производство чистого Б. началось после 2-й мировой войны. Переработка Б. осложняется высокой токсичностью летучих соединений и пыли, содержащей Б., поэтому при работе с Б. и его соединениями нужны специальные меры защиты.

  Бериллий в организме. Б. присутствует в тканях многих растений и животных. Содержание Б. в почвах колеблется от 2•10-4 до 1•10-3 %; в золе растений около 2•10-4 %. У животных Б. распределяется во всех органах и тканях; в золе костей содержится от 5. 10-4 до 7. 10-3 % Б. Около 50% усвоенного животным Б. выделяется с мочой, около 30% поглощается костями, 8% обнаружено в печени и почках. Биологическое значение Б. мало выяснено; оно определяется участием Б. в обмене Mg и Р в костной ткани. При избытке в рационе Б., по-видимому, происходит связывание в кишечнике ионов фосфорной кислоты в неусвояемый фосфат Б. Активность некоторых ферментов (щелочной фосфатазы, аденозинтрифосфатазы) тормозится малыми концентрациями Б. Под влиянием Б. при недостатке фосфора развивается не излечиваемый витамином D бериллиевый рахит, встречаемый у животных в биогеохимических провинциях , богатых Б.

  Лит.: Бериллий, под ред. Д. Уайта, Дж. Бёрка, пер. с англ., М., 1960; Дарвин Дж., Баддери Дж., Бериллий, пер. с англ., М., 1962; Силина Г. Ф., Зарембо Ю. И., Бертина Л. Э., Бериллий, химическая технология и металлургия, М., 1960; Папиров И. И., Тихинский Г. Ф., Физическое металловедение бериллия, М., 1968; Эверест Д., Химия бериллия, пер. с англ., М., 1968; Химия и технология редких и рассеянных элементов, т. 2, М., 1969; Самсонов Г. В., Химия бериллидов, «Успехи химии», 1966, т. 35, в. 5, с. 779; Гагарин В. В., Бериллий как конструкционный материал атомной энергетики, «Атомная техника за рубежом», 1969, №3, с.9; Ижванов Л. А. [и др.], Бериллий — новый конструкционный металл, «Металловедение и термическая обработка металлов», 1969, №2, с. 24; Коган Б. И., Капустинская К. А., Бериллий в современной технике, «Цветные металлы», 1967, № 7, с. 105.

  Б. М. Булычев, Л. А. Ижванов, В. В. Ковальский.

Бериллия окись

Бери'ллия о'кись, BeO, соединение бериллия с кислородом; белый порошок, плотность 3025 кг/м3 , температура плавления 2570±30°С, температура кипения 4260±160°С. В природных условиях встречается крайне редко в виде минерала бромеллита. Б. о. практически нерастворима в воде, в кислотах растворяется с образованием солей Be2+ (прокалённая Б. о. растворяется только в концентрированной H2 SO4 и HF, а плавленная только в HF). Со щелочами образует растворимые в воде соли бериллаты (см. Бериллий ). BeO не взаимодействует с водородом и устойчива к действию большинства металлов. При температуре около 2000°С BeO восстанавливается углём в присутствии меди с образованием медно-бериллпевой лигатуры (2—4% Be), используемой в производстве бериллиевой бронзы. Получают Б. о. термическим разложением гидроокиси или солей бериллия. Применяют как огнеупорный инертный материал для изготовления тиглей и специальной керамики с малой электрической проводимостью и большой теплопроводностью (немногим меньше, чем у меди); в ядерных реакторах — как замедлитель и отражатель нейтронов, а также для производства топливной крупки, ядерного горючего на основе частиц UO2 , покрытых BeO; в рентгенотехнике — для стекол, пропускающих рентгеновские лучи; в органическом синтезе — как катализатор.

  Лит.: Беляев Р. А., Окись бериллия, М., 1962: Материалы для ядерных реакторов, пер. с англ., М.,1956(Ядерные реакторы. Материалы комиссии по атомной энергии США, [т. 4], гл. 3); Окись бериллия. Труды Первой международной конференции по окиси бериллия, пер. с англ., М., 1968. См. также лит. при ст. Бериллий .

  Б. М. Булычев.