Изменить стиль страницы

Рисунок 4 показывает обмотку С С в еще более сдвинутом положении, когда якорь завершил оборот на три восьмых. В этот момент обмотка С всё гще вырабатывает ток того же направления, как и прежде, но слабее, в то же время образуя сравнительно слабые полюсы ns (на рисунке 4а). Ток в обмотке С той же силы, но обратного направления. Результат этого, следовательно, в образовании на кольце полюсов п1 и s1 как показано на рисунке, и полярности NS, причем полюсы теперь сдвинуты на три восьмых по отношению к окружности кольца.

Лекции i_015.png

На рисунке 5 показано, что якорь завершил оборот наполовину, а результирующее магнитное состояние кольца показано на рисунке 5а. Теперь ток в обмотке С равен нулю, в то время как обмотка С1 вырабатывает наиболее сильный ток того же направления, что и прежде; намагничивание сейчас производят витки с1 с1 и только они, как показано на рисунке 5а, причем следует помнить, что полюсы NS сдвинуты по отношению к окружности кольца наполовину. Во время второй половины оборота все действия повторяются, как показано на рисунках с 6 по 8а.

Рисунки помогают понять, что во время одного оборота якоря генератора полюсы кольца один раз оборачиваются по окружности и каждый оборот производит одинаковый результат, при этом полюсы вращаются очень быстро, находясь в согласии с вращением якоря. Если реверсировать подключение одной из обмоток, то направление вращения полюсов изменится на противоположное направление, но действия при этом будут совершаться те же. Вместо того чтобы использовать четыре провода, с тем же успехом можно использовать три, причем один будет обратным для обоих контуров.

Лекции i_016.png
Лекции i_017.png

Это перемещение, или вращение полюсов, проявляется в ряде любопытных явлений. Если стальной диск или диск, изготовленный из любого другого магнитного металла, аккуратно насаженный на какую-либо ось, поднести к кольцу, он начинает быстро вращаться, причем направление вращения изменяется в зависимости от положения диска. Например, снаружи и изнутри кольца он движется в противоположных направлениях, оставаясь в покое в положении, симметричном кольцу. Это легко объяснить. Каждый раз при приближении полюса, этот полюс индуцирует на ближайшей точке диска противоположный полюс и возникает притяжение; благодаря этому полюс сдвигается далее и возникает тангенциальное притяжение. Действие повторяется

Лекции i_018.png
Лекции i_019.png

Рис. 9

вновь и вновь, в результате чего имеем более или менее быстрое вращение диска. Поскольку сила притяжения действует на ту часть диска, которая ближе всего к кольцу, то вращение внутрь и наружу, то есть вправо и влево происходит в разных направлениях, как показано на рисунке 9. Если диск помещен симметрично кольцу, то сила притяжения по обеим сторонам его одинакова, и вращения не происходит.

Это действие основано на магнитной инерции железа; по этой причине большему влиянию подвержен диск из твердой стали, нежели диск из мягкого железа. Последний способен изменять магнитные поля. Такой диск оказался очень полезным инструментом в проводимых исследованиях, так как позволял мне заметить все особенности происходящих событий. Любопытное воздействие также испытывают на себе железные опилки. Если насыпать немного опилок на бумагу и поднести к внешней стороне кольца поближе, то можно заметить, что они начинают колебаться, оставаясь в то же время на месте, даже если лист бумаги двигать взад и вперед; но если поднять лист на определенную высоту, которая зависит от интенсивности полюсов и скорости вращения, опилки разлетаются в стороны в направлении, обратном предполагаемому вращению полюсов. Если лист бумаги с опилками положить плашмя на кольцо и внезапно подать ток, можно легко пронаблюдать существование магнитных вихрей.

Для того чтобы продемонстрировать полное сходство между кольцом и вращающимся магнитом, сильный электромагнит механически вращали, при этом наблюдались все явления, идентичные описанным выше.

Очевидно, что вращение полюсов вызывает явление индукции и может быть использовано для выработки тока в замкнутом проводнике, помещенном в магнитное поле. Для этой цели удобно намотать на кольцо две наложенные друг на друга обмотки, которые образуют соответственно первичный и вторичный контуры, как показано на рисунке 10. Чтобы добиться наиболее экономичных результатов, магнитная цепь должна быть полностью замкнута и видоизменена в зависимости от конкретных условий.

Лекции i_020.png

Эффект индукции, наблюдающийся во вторичной обмотке объясняется главным образом сдвигом или движением магнитного поля; но токи в цепях могут возникать также и вследствии изменений напряженности полюсов. Однако если правильно сконструировать генератор и определить магнитный эффект первичной обмотки, от последнего явления можно избавиться. Если поддерживать постоянную напряженность магнитного поля, то действие прибора будет идеальным и мы будем иметь тот же результат, как если бы сдвиг происходил при помощи коллектора с бесконечно огромным числом пластин. В этом случае теоретически соотношение между магнитным воздействием каждого витка первичной обмотки и их результирующим магнитным действием можно выразить как уравнение окружности, центр которой совпадает с центром прямоугольной двухосной системы координат, и радиус которой есть результирующая величина и координаты обеих составляющих. Они есть соответственно синус и косинус угла а между радиусом и одной из осей (ОХ). Взглянув на рисунок 11, увидим, что r 222, где x=r cos а, a y=r sin а.

Допустим, что намагничивание каждой из обмоток в трансформаторе пропорционально силе тока — что можно допустить для малых величин намагничивания, — тогда х=Кс, а у=Кс1 где К — величина постоянная, а с и с1 - величины силы тока в обеих обмотках. Если предположить далее, что поле в генераторе однородно, то для постоянной скорости с=К1 sin a, a c=K1 sin (90° + a)=K1 cos а, где K1 — величина постоянная (см. рисунок 12). Следовательно, х = Кс = КК1 cos а; у = Кс1 = KK1 sin а, и КК = r.

Это означает, что в однородном поле расположение обмоток под прямым углом обеспечит теоретический результат, а напряженность двигающихся полюсов будет постоянной. Но из выражения r 2= х22 следует, что у=0, r=х, т. е. совокупное намагничивание обеих обмоток равно по величине магнитному действию одной обмотки в точке максимума. В трансформаторах и в некоторых типах моторов флуктуации полюсов не имеют особого значения, но в других типах моторов желательно иметь теоретический результат.

После применения этого принципа на практике были созданы два типа моторов. Первый тип характеризуется сравнительно слабым вращательным действием в начале работы, но затем поддерживает постоянную скорость при любой нагрузке. Этот двигатель назван синхронным. Второй тип создает хорошее усилие вначале, но скорость его вращения зависит от нагрузки.

Эти моторы могут приводиться в действие тремя способами: 1. Только от источника переменного тока. 2. От совместного действия переменных и наведенных токов. 3. От совместного действия переменного и постоянного тока.

Простейший синхронный двигатель можно получить, если взять кольцо из тонкого проката, снабженное четырьмя обмотками, служащими полюсами, и соединить таким же способом, как показано [рисунок 9]. Железный диск с удаленными по обеим сторонам секторами может служить якорем. Такой двигатель показан на рисунке 9. Если диску позволить свободно двигаться внутри кольца в непосредственной близости от полюсов, очевидно, что поскольку полюсы перемещаются, он, вследствие своего стремления находиться в точке, где есть наибольшее количество силовых линий, будет точно следовать движению полюсов и его движение будет синхронным движению полюсов якоря генератора, т. е. в определенном положении, показанном на рисунке 9, в котором один оборот якоря производит два импульса тока в каждом контуре. Очевидно, что если при одном обороте производится большее количество импульсов, то и скорость вращения мотора возрастает. Если допустить, что сила притяжения, оказываемая на диск, наиболее велика, когда он ближе всего к полюсам, то понятно, что такой мотор будет работать с одинаковой скоростью при всех нагрузках в пределах своей мощности.