Здесь Максутов делает первый шаг на пути к изобретению. Оптическое стекло - нечто вроде неизбежного зла. Ладно, говорит изобретатель, пусть будет оптическое стекло! Но, раз уж приходится его использовать, нельзя ли получить, в порядке своего рода компенсации, какие-то дополнительные преимущества?

Достаточно было поставить вопрос так, чтобы не только специалист, но и вообще каждый человек, знакомый с устройством телескопа, дал правильный ответ. Около входного отверстия трубы укреплено плоское зеркальце, направляющее лучи рефлектора в глаз наблюдателя. Раньше система крепления поглощала много света, теперь же это зеркальце (его называют еще вторичным зеркалом) можно прикрепить непосредственно к защитному окну.

«Но мысль идет дальше. Нельзя ли…, выполнить защитное окно не в виде плоскопараллельного диска, а в виде мениска, чтобы заалюминированная его центральная часть служила вторичным зеркалом?»

Тут уже не только упрощается крепление вторичного зеркала, а исчезает, в сущности, само зеркало. Функцию вторичного зеркала «по совместительству» будет выполнять центральная часть защитного окна.

«Такая конструкция очень хороша (у вторичного зеркала исчезла оправа, экранирование стало минимальным), но не внесет ли мениск вредных аберраций? По-видимому, внесет (не ахроматическую, а сферическую аберрацию, притом как положительную, так и отрицательную). '

И тут-то я чуть-чуть не упустил важного открытия, рассудив, что в таком случае можно рассчитать мениск, не вносящий, аберрации, т. е. безаберрационный мениск».

Внимательно вчитайтесь в эти строки. Изобретателю надо было преодолеть два барьера. Первый барьер - защитное стекло должно быть сделано из дорогого оптического стекла. Выяснилось, что удорожание можно компенсировать: расходы на оптическое стекло окупаются тем, что защитное окно будет выполнять не одну, а несколько функций. Значит, не обязательно прыгать через барьер, можно его обойти…

Но вот изобретатель подошел ко второму барьеру: потребовалось устранить искажения, создаваемые мениском. Казалось, тут бы и применить только что найденный метод компенсации. Пусть аберрация - еще одно неизбежное зло. Надо компенсировать это зло, извлечь из него какую-то пользу, а не устранять!

Однако здесь и проявилась слабость метода «проб и ошибок». На первый взгляд кажется, что пробы беспорядочны. Но в этом беспорядке есть своя система: пробы ведутся по линии наименьшего сопротивления. Легче всего пробовать в привычном направлении, и изобретатель, сам того не замечая, идет туда, где дорога более накатана (и где поэтому вряд ли можно найти новое). Возобновляются попытки перепрыгнуть через барьер, хотя буквально за несколько минут перед этим было открыто, что можно не прыгать, а идти в обход…

«На этих мыслях,- продолжает Максутов,- задержался несколько часов, пока не додумался, что значительно выгодней выбрать такой мениск, который вводит в систему положительную аберрацию, способную компенсировать отрицательную аберрацию сферического зеркала или сферических зеркал.

В этот Момент и были изобретены менисковые системы».

Таким образом, второй барьер был преодолен тем же методом компенсации. Мениск искажает световой поток,и изобретатель понял, что с этим не надо бороться. Выгоднее использовать создаваемые мениском искажения для ликвидации других искажений, вызванных погрешностями при изготовлении главного зеркала телескопа - рефлектора.

Изготовление параболического рефлектора - исключительно сложная и трудоемкая работа. Изобретение Максутова позволило заменить параболические рефлекторы неизмеримо более простыми в изготовлении сферическими зеркалами. Раньше сферические зеркала нельзя было применять из-за того, что они создают очень большие искажения. Теперь появилась возможность компенсировать искажения рефлектора искажениями, создаваемыми мениском. Несвершенный (в оптическом смысле) рефлектор и несовершенный мениск, работая спаренно, давали вполне совершенную оптическую систему!

Максутов пишет:

«Работая над теорией менисковых систем и видя их преимущества, невольно вспоминаешь тернистый путь истории оптического приборостроения. Сколько было изломано копий в борьбе сторонников рефлектора и рефрактора! Сколько было затрачено энергии, с одной стороны, на овладение методикой изготовления и исследования точных асферических поверхностей, а с другой - на разрешение проблемы ахроматических стекол! Сколько изготовлено флинтгласа и других трудоемких сортов стекла для тех случаев, в которых их можно было бы и не применять! Наконец, сколько построено дорогих, громоздких и несовершенных телескопов с не менее дорогим и громоздким механическим оборудованием и дорогими помещениями с огромными вращающимися куполами!

Если бы на заре астрономической оптики был известен элементарно простой принцип менисковых систем, в основном доступный пониманию современников Декарта и Ньютона, то астрономическая оптика могла бы пойти по совершенно иному пути и иметь ахроматическую короткофокусную оптику со сферическими поверхностями, базирующуюся лишь на единственном сорте оптического стекла, безразлично с какими константами» К

Итак, первостепенное по своему значению изобретение на этот раз запоздало на 250-300 лет!

Какова же его дальнейшая судьба?

Построив менисковый телескоп, Максутов использовал найденную идею для конструирования менисковых микроскопов, биноклей и других оптических приборов. Но даже в оптике идея Максутова была применена только к решению задач, как две капли схожих с первоначальной. Если же задача оказывалась несколько иной, ее не решали вообще или решали, заново проделывая весь тот путь, по которому прошел в свое время Максутов.

Вот история одного из таких изобретений. Обратите внимание - ход рассуждений и полученное решение поразительно напоминают историю изобретения менискового телескопа.

«Идея возникла случайно. Знал я одного человека - он тоже подводник-любитель, много лет носил очки. А под водой?… Я посоветовал ему сделать маску из плексигласа и выфрезеровать на ней линзы, соответствующие стеклам очков. Идея была заманчива, но это доступно не каждому.

И вдруг оказалось, что решение проблемы находится в… воде. Если сделать плоскопараллельное стекло маски выпуклым, то граница двух сред - воды и воздуха - будет для наблюдателя вогнутой, рассеивающей лучи света, как вогнутые стекла очков. У спортсмена, о котором я упомянул, стекла очков имели минус 2-3 диоптрии. Как показали наши опыты, это эквивалентно стеклу маски с радиусом выпуклости в 15-10 см. Вот тут-то я и понял- дело совсем не в очках. Ведь под водой удаленные предметы видятся искаженно: крупнее и ближе. Но если сделать радиус выпуклости маски 20-25 см, увеличение, передаваемое водой, исчезнет, подводный мир предстанет перед нами в натуральную величину и куда более четко» !.

Подобно Максутову, изобретатель начал с мысли о том, что нужно убрать лишнюю «крепежную систему» и прикрепить линзы на иллюминаторе маски. Затем пришла догадка: проще вообще обойтись без очков, сделав иллюминаторы выпуклыми, то есть превратить их в мениск. Но мениск «по совместительству» можно использовать, чтобы устранить искажения, которые неизбежны при наблюдении через плоский иллюминатор маски. Так сформулировалась новая техническая идея. Значение ее очень велико, потому что производительность труда водолаза во многом зависит от условий видимости.

Самое ценное в изобретении Максутова - идея допустить недопустимое и потом это компенсировать. Можно смело утверждать, что среди многих не решенных современной техникой задач есть и такие, которые удалось бы решить «методом компенсации». Однако метод этот мало кому известен. Сотни раз описаны менисковые телескопы, но нет ни одной работы, в котброй бы говорилось: вот удачная тактика решения самых различных изобретательских задач, используйте ее не только в оптике, но и в других отраслях техники…

* * *

До сих пор мы говорили об изобретателях, решавших задачи в одиночку. Может быть, в крупных коллективах дело обстоит иначе? Может быть, там существует более эффективная технология творчества?