Изменить стиль страницы

A method of greater subtlety is the bolas, first proposed in the 1950s. Traditionally, a bolas is a hunting device made by tying three weights to strings and then tying the ends of the strings together. When thrown, it spins, pulling the weights apart, until the strings hit the target, at which point the weights spiral rapidly inwards and deal a killing blow. The same sort of device could be set up in a ver­tical plane above the equator, a bit like a giant ferris wheel with only three spokes. On the ends of the spokes would be pressurized cab­ins. The lowest part of the bolas's swing would be somewhere in the lower atmosphere, the top part way out in space. You would fly up in an aircraft, transfer to the first passing cabin, and be whisked skywards. The biggest obstacle to making such a machine is the cable, which has to be stronger than any known material, but car­bon fibre is well on the way to combining enough strength with enough lightness. Friction with the atmosphere would gradually slow the bolas's rotation down, but that could be compensated for using solar power arrays up in space.

The most celebrated device of this type, however, is the space elevator. We discussed this in the opening chapter, both as a serious technological idea and as a metaphor: here we give a few more details. In essence, the space elevator starts out as a satellite in geo­synchronous orbit. Then you drop a cable from it to the ground, and the rest is a matter of building a suitable cabin and, again, find­ing suitable material for the cable. You get the material up there using rockets or a whole cascade of bolases (and once you've got a small cable you can haul up the stuff for the bigger one). You only need to do all this once, so the cost is irrelevant over the longer term.

As we emphasized at the start of the book, once there is as much traffic is coming down as is going up, getting off the ground is essentially free and requires zero energy. At that point you build your interplanetary spacecraft up in space, using raw materials from the Moon or the asteroid belt. So the space elevator gives you a new place to start from, which is why we've used it as a metaphor for processes like life.

The idea of a space elevator was originated by the Leningrad engineer Y.N. Artsutanov in 1960, in an article in Pravda. He called it a 'heavenly funicular' and calculated that it could lift 12,000 tons per day into orbit. The idea came to the attention of Western scien­tists in 1966, thanks to John Isaacs, Hugh Bradner, and George Backus. These scientists weren't interested in getting into space: they were oceanographers, the only people seriously interested in hanging things on long cables. Except that they wanted to hang them down into the ocean bottoms, not up into space. The oceanog­raphers were unaware of the earlier Russian work, but Artsutanov's anticipation quickly became known to Western scientists too. The astronaut and artist Alexei Leonov published a painting of a space elevator in action in 1967.

Such a simple but mostly impractical idea is likely to occur to lots of people, but wouldn't become widely known because it's not practical with current or near-future technology, and that means that it will be re-invented independently by many people. In 1963 the science-fiction author Arthur C. Clarke considered suspending a lower satellite by cable from a geosynchronous one, as a way to increase the number of effectively geo- synchronous satellites for communication purposes. Later he realized that the same method would lead to the space elevator, an idea that he developed in his novel The Fountains of Paradise. In 1969 A.R. Collar and J.W. Flower also considered suspending a lower satellite by cable from a geosynchronous one And in 1975 Jerome Pearson suggested an 'orbital tower' that was essentially the same idea.

You can, of course, suspend more than one cable, once you've got one space elevator you can lift everything else that you need into space at low cost, so why not go the whole hog? Charles Sheffield's The Web Between the Worlds envisages a whole ring of space eleva­tors round the equator. This is what the wizards have found. Ironically, because human civilization has taken such a short time to develop, on evolutionary timescales, the wizards missed us ...

Having built your space elevator, you're now in a position to colo­nize other worlds. The obvious first destination is Mars. You get there in a cloud of small, mass-produced ships, and once you've got there one of the first things you do is drop down a cable and build a Martian space elevator. You're up in orbit anyway, so why not take advantage of the fact? Again, this is the metaphorical aspect of the space elevator: as soon as just one exists, it opens up a vast range of new possibilities. However, you'll probably need to land a team by some other method in order to construct the complex at the bottom to which the cable will be tethered.

Mars isn't a great place to live, so the next step is to terraform it, to make it more earthlike. There are reasonably plausible methods for doing that, detailed at length in Kirn Stanley Robinson's series Red Mars, Green Mars, Blue Mars. Mars is no improvement when it comes to meteor-strikes, but at least the colony on Mars is unlikely to get wiped out at the same time as the main population on Earth. Because life is reproductive, if one of them does get wiped out, it can quickly be re-colonized from the other. After a few cen­turies, you'd hardly notice any difference. Still, it may be better to be more ambitious and go to the stars. By the time we're ready for that, we'll have interferometer telescopes good enough to spot which stars have suitable planets. The only problem, then, will be to get there.

There are plenty of suggestions, and we won't add to them. Think of mid-Victorians predicting life in the 1990s. The dynamic of extelligence is emergent or, to put it another way, we haven't the faintest idea what we'll think of next but it'll probably surprise us.

One way, if all else fails, is the Generation Ship, a huge vessel that can hold an entire city of people, who live, breed, educate, and die throughout the centuries-long journey. Make it big and inter­esting enough, and they may even lose interest in the destination. The Discworld almost counts as one of these; it's on a journey, the inhabitants don't know where they're going, the designers have given it a small controllable sun (thus doing away with all those nasty fluctuations) and no less than five bio-engineered creatures positively delight in clearing local space of intrusive debris ...

Back on our world, you could take a really long-term view and seed the galaxy with genetically engineered bacteria, carefully tailored so that whenever they find a suitable planet they eventually evolve into humanoid life (or life, at least). We would die out, but maybe our fleet of cheap, slow ships might seed a few new Earths somewhere.

There's no shortage of ideas. Some might even be practical. The galaxy beckons. We might die trying, but since we're going to die anyway, why not try?

And what will we find out there? Will we find a radically differ­ent kind of 'space elevator', for instance? Well, if there are aliens that live on neutron stars, as Robert L. Forward describes in Dragon's Egg, then they might escape by tilting their world's mag­netic axis, turning it into a pulsar, and surfing its plasma jet. Perhaps all those pulsars were formed in this way. Like any 'space elevator', if you can manage the trick once, the rest is easy. The inhabitants of one neutron star managed it, and colonized all the others, founding the Pulsar Empire ...

And since we can envisage new kinds of physical space elevator, there must surely also be new kinds of metaphorical space elevator. Not just aliens a bit like us, but radically different new kinds of life.