Изменить стиль страницы

Чудеса становятся реальностью не только благодаря большим научным достижениям. Огромную роль здесь играет специальная лабораторная техника. Ведь приборы должны точно и безошибочно вынуть «деталь» из одной крошечной клетки и вмонтировать ее в точно определенное место другой клетки. При этом не только не повредив клетку, но и заставив ее после операции жить и работать по-новому.

Вот вам несколько цифр, подтверждающих сверхсложность подобных операций. Клетка — безусловно живое образование, очень сложна и очень мала. Так, большинство животных клеток не превышает 0,03 миллиметра, а, скажем, клетка человеческого мозга достигает лишь 0,01 миллиметра. Представляете, какими должны быть скальпели, зажимы, шприцы, пипетки и другие инструменты, если ими можно действовать в отдельных мелких деталях клетки?

Некоторые инструменты (они делаются из специального стекла) имеют толщину всего в 0,002 миллиметра. Это в сто раз меньше, чем диаметр человеческого волоса.

В генной инженерии часто приходится делать инъекции, вводить в точно определенное место микроскопически малые дозы. Подсчитано, что если в секунду делать одну подобную инъекцию, то один стакан нужно наполнять такими дозами миллион лет. Сложности не ограничиваются размерами. Важны давления, влажность, вибрации, электромагнитные поля и время осуществления тех или иных операций. Так, введение сверхмалой дозы микропипеткой может продолжаться в одних случаях 0,5 секунды, а в других 120 секунд.

Работами доктора биологических наук Н. Лучника в 1983 году была установлена невероятная жизнеспособность живой клетки. Она может восстановиться даже после губительного для нее радиоактивного излучения. Открывается перспектива искусственного управления радиочувствительностью генетического аппарата наследственности. Появляются надежды на разумное воздействие на ход внутриклеточных процессов. Например, при опухолевых заболеваниях появятся пути управления процессами, происходящими в больных и здоровых тканях во время лучевой терапии: при этом ожидается возможность подавления и даже восстановления опухолевых клеток.

Живое необычайно сложно, это высшая форма движения материи. Возьмем молекулу какого-нибудь углеводорода, например нафталина. Его молекула содержит 10 атомов углерода и 8 атомов водорода. А теперь возьмем молекулу одного из самых простых белков — дыхательного фермента гемоглобина. Окажется, что в ней уже 10 тысяч атомов, хотя средний поперечник молекулы не превышает 55 ангстрем (ангстрем равен одной стомиллионной доле сантиметра). Это очень простая молекула. Многие биологические молекулы состоят из сотен тысяч и даже миллионов атомов! В очень сложном взаимном расположении различных атомов, образующих молекулу, и заключена загадка их биологической активности.

Вот пример того, что пространственная архитектура биологической молекулы дает ей возможность выполнять определенные обязанности. Одним из основных методов определения архитектуры сложных молекул является их рентгеноскопия. Очистив белок и закристаллизовав его, можно с помощью рентгеновских лучей изучить атомную пространственную архитектуру кристалла. Английский ученый Д. Филлипс подобным способом определил структуру кристаллического фермента (биологического катализатора) лизоцима. Этот белок в живых организмах выполняет как бы обязанности врача. Соприкасаясь с вредными бактериями, он разрушает их стенки и, следовательно, убивает их.

Как же белковая молекула справляется со своей сложной задачей? Оказалось, что тысячи атомов, образующие молекулу лизоцима, напоминают по своим очертаниям не совсем сжатый человеческий кулак. Этот приоткрытый «кулак» при первой возможности захватывает определенные молекулы (полисахариды), которые входят в состав бактерий. Захватив полисахарид, белковая молекула сжимает свой «кулак» и рвет добычу пополам. После этого молекула лизоцима восстанавливает свою пространственную структуру: «кулак» снова чуть приоткрыт и готов расправиться со следующим врагом.

Возьмем другой хорошо известный пример: молекулы дезоксирибонуклеиновой кислоты (ДНК), несущие в себе наследственную информацию, необходимую для биологического построения всех белков, в конечном итоге — всего живого. Такая молекула в миллион раз тяжелее молекулы водорода. С точки зрения пространственной архитектуры ДНК — это как бы микроскопическая модель веревочной лестницы. Две длинные «веревки» составлены из чередующихся в строгом порядке сахарных и фосфатных групп, а ступеньками служат две группы оснований. Всего таких оснований в молекуле ДНК присутствует четыре (аденин, гуанин, тимин и цитозин). «Лестница» сделана природой очень точно: «ступеньки» расположены строго на расстоянии 3,4 ангстрем друг от друга, ширина «лестницы» — 20 ангстрем, а длина колоссальна, порой 400 миллионов ангстрем. Молекула закручена жгутом, как винтовая лестница. При этом фосфатно-сахарные цепи, составляющие «веревки» лестницы, находятся снаружи, а «ступеньки» — пуриновые и пиримидиновые основания — в середине. Последовательность расположения четырех типов химических оснований «ступенек», являющихся нуклеотидами, и их определенная связь и повторяемость в длинной цепи как раз и есть шифр наследственности. Как же построились они в столь хитрую «лестницу», где каждая «ступенечка» и каждый кусочек «перильца» должны были стать на точно отведенное им место?

И относительно «простая» молекула лизоцима и более сложная молекула ДНК с ее запрограммированным кодом наследственной информации еще не жизнь, а лишь необычайно сложные и чрезвычайно специфичные по своему строению и химизму «кирпичики» живого. В неразрывном союзе с нуклеиновыми кислотами, носителями наследственных программ синтеза белков, и в особенности белков-ферментов, а также фосфорных соединений — «энергетических станций» белки обеспечивают существование и воспроизводство жизни. Можно сказать: белки и нуклеиновые кислоты — химический материал любого живого.

Простое легко сравнивать со сложным. Молекула нафталина включает 18 атомов, молекула белка — сотни тысяч и миллионы. Все ясно. Трудно сравнивать очень сложное с невероятно сложным. «Жизнь в полном смысле слова, — констатировал академик Г. М. Франк, — начинается тогда, когда из этого химического материала возникает особым образом организованная система — автономная, саморегулирующаяся и самовоспроизводящая.

Простейшая из таких „конструкций“ — живая клетка. Для нее, как известно, характерны рост и воспроизведение, т. е. размножение».

Попробуем все-таки сравнить сложное с невероятно сложным. В одной живой клетке в самом строгом порядке работает несколько сот ферментов — катализаторов белковой природы. Перечень непрерывно созидающихся в клетке химических соединений, наверное, не вошел бы в эту книгу — он содержит в себе несколько тысяч наименований. Причем все это находится в непрерывном движении и превращении (с разными скоростями), во время которых многие молекулы распадаются и воссоздаются вновь.

Электронные микроскопы, способные увеличить изображение в несколько миллионов раз, открыли исследователям поразительно сложную картину устройства клетки.

Ученые, конечно, и раньше знали, что клетка, элементарная живая система, — сложное образование. Оптические микроскопы, лучшие образцы которых позволяют увеличить изображение клетки в 1,5–2 тысячи раз, показали, что каждая клетка заполнена густой жидкостью — протоплазмой (точнее, цитоплазмой), в центре которой находится довольно крупное ядро. Окружена клетка тонкой оболочкой. Еще при более слабых микроскопах было подмечено деление клетки. Совершенная техника позволила установить, что это всегда начинается с деления ядра. При этом становятся четко видны нитевидные или палочковидные тельца. В различных клетках всегда свое, одинаковое количество таких телец. В ходе деления они удваиваются; в результате из одной клетки образуются две, и в ядрах каждой из них сохраняется количественно неизменный набор этих телец.

Вы, наверное, догадались — речь идет о хромосомах, носителях наследственной информации, управляющих всеми процессами клетки и в конечном итоге предопределяющих развитие и сохранение наследственности организма в целом. Как вы помните, хромосомы представляют собой как раз длиннющую «лестницу» ДНК и белковую оболочку. Замечательное свойство передачи наследственности заключается в том, что «лестница» ДНК делится во всю длину на две половинки. Затем каждая из половинок совершенно точно воспроизводит отделившуюся часть. Между прочим, общая длина полностью выпрямленных нитей ДНК из одной клетки человеческого организма достигает 180 сантиметров. В организме колоссальное количество клеток, в каждой из них — нити ДНК. В человеческом организме имеется 160 миллиардов километров нитей ДНК! Это равно расстоянию, примерно в 1000 раз большему, чем расстояние от Земли до Солнца. Подобная цифра дает возможности призадуматься о фантастической сложности разумной жизни.