Вебер считал, что при этих условиях одновременные всплески колебаний обоих цилиндров — признак воздействия на них очень длинных (многокилометровых) гравитационных волн. Приборы отметили такие всплески, и во всех, пожалуй, газетах и журналах мира появились сообщения о первом приеме гравитационного излучения.
Астрофизики, однако, пришли в большое смущение. Чувствительность веберовской системы была, несмотря на все старания, очень низка. Если тем не менее прием состоялся, это означало, что во Вселенной происходят процессы, мощность которых не соответствует теоретическим представлениям астрономов. Предполагаемым источником волн, которые Вебер пытался принять, является центр нашей Галактики. Для того, чтобы антенна их зафиксировала, в центре Галактики должна была ежегодно переходить в гравитационное излучение полная энергия вещества с массою в тысячу с лишним раз больше солнечной. Для Галактики чересчур много. При таких процессах, похоже, давно бы не существовало пашей звездной системы. Но теория теорией, а эксперимент экспериментом. Подобное проверяют подобным, клин вышибают клином, эксперимент провернется другим экспериментом.
Первыми в мире проверяли опыт Вебера в Московском университете. Это сделала группа Брагинского. Волн не приняли. Потом эксперимент повторяли в США и Англии, Италии и ФРГ… Эффект Вебера тоже не повторился.
Что же произошло?
По-видимому, установка Вебера не была достаточно защищена от внешнего «постороннего» воздействия. Во всяком случае обнаружено, что некоторые моменты, в которые антенна Вебера регистрировала приход волн, совпадают во времени с изменениями солнечной активности и магнитного поля Земли.
Первая атака оказалась неудачной, но она стала важным звеном планомерного штурма проблемы.
В том же 1971 году, когда Вебер закончил свои опыты, появилась в «Письмах в Журнал экспериментальной и теоретической физики» работа В. Б. Брагинского и М. Б. Менского. Она излагала способ, обещающий повысить чувствительность коротковолновых гравиприемников на восемь порядков по сравнению с антенной Вебера, то есть в сто миллионов раз. Этим новый метод гравиприема обязан принципиально новому подходу к проблеме. Измеряться должны не механические колебания твердого тела, а изменение свойств цуга — сгустка электромагнитных волн. Слово «цуг» — немецкого происхождения и означает запряжку лошадей гуськом, в две или три пары. Цуг волн в новом гравиприемнике должен быть пущен по круговому волноводу. Согласно законам общей теории относительности, гравитационная волна воздействует на волны электромагнитные. На одних участках волновода она их «подгонит», на других— «притормозит». Выразится это в изменении частоты электромагнитных волн и сдвиге их фазы. Если теперь правильно подобрать то и другое, в принципе можно изменить диаметр круга и время его обегания цугом так, чтобы это время было вдвое меньше периода колебаний гравитационной волны; наступит резонанс: на одних и тех же участках волновода цуг будет снова и снова ускоряться, на других снова и снова замедляться. Это и позволяет резко повысить чувствительность прибора. Резко, но пока недостаточно для приема предполагаемых гравитационных волн.
Теоретики — тут большую роль играют советские ученые, группирующиеся вокруг академика Я. Б. Зельдовича, — стали рассчитывать, какие именно волны, какой длины и всплесками какой продолжительности должны приходить на Землю от гравитационных источников разного типа. Такие расчеты были проделаны, например, для шарового скопления, содержащего примерно миллиард сверхплотных звезд (пульсаров, черных дыр). Гравитационные волны должны были излучаться при пролете звезд на близком расстоянии друг от друга и при их столкновениях.
Для приема излучения от такого скопления надо настроить детектор на частоту сто герц (длина волны — три тысячи километров). При этом чувствительность гравитационной антенны должна быть достаточной, чтобы зарегистрировать амплитуду колебаний в десять в минус шестнадцатой степени сантиметра за одну сотую секунды.
Самые мощные из предполагаемых источников гравитационных волн — черные дыры с массою в миллион или миллиард солнечных масс. Точнее говоря, не сами дыры, а процессы их образования, если схлопывание звезд имеет несимметричный характер, если вещество звезды устремляется к центру ее неравномерно с разных сторон. Но черные дыры — все-таки гипотетические объекты. То же относится к процессам, при которых они образуются. Реальнее рассчитывать на волны, идущие от нейтронных звезд, масса которых не может быть намного больше солнечной.
Гравитационные антенны придется изолировать не только от сейсмических и акустических шумов, но и от магнитных воздействий любого типа, и, что труднее всего, от тепловых шумов. Тут надо будет работать при максимально низкой температуре, в гигантских холодильниках.
Большие возможности открывает космос.
Надо вынести две массы, составляющие гравитационную антенну, за пределы атмосферы — конечно, на спутниках. Желательно на спутниках, свободных от сноса. Здесь длину антенны, расстояние между пробными массами можно сделать сколь угодно большой — скажем, размером с радиус земной орбиты или еще больше.
Такая антенна будет предназначена для сверхдлинных гравитационных волн.
«Обычно экспериментаторы интуитивно отдают предпочтение лабораторным земным вариантам опыта по сравнению с космическими», — пишут по этому поводу В. Б. Брагинский и В. Н. Руденко. Причина понятна. Космические эксперименты дороги. Но в случае с гравитационными волнами и лабораторные эксперименты весьма недешевы. А на разработку надежных систем защиты от всевозможных шумов и необходимое повышение точности измерений в лаборатории требуется, по мнению оптимистов, минимум пять лет, чтобы стал реален «опыт Герца». Пессимисты увеличивают срок втрое. Между тем космическую антенну нужной чувствительности можно запустить в принципе в самое ближайшее время. Можно даже использовать космические станции обычного типа, то есть несвободные от сноса, расположив их соответствующим образом и применив изощренные методы отсеивания влияний, не относящихся к делу, с помощью расчетов.
Как ни велики надежды на космос, разрабатываются все новые наземные варианты антенн.
Так, в конце пятидесятых годов М. Е. Герценштейн указал вот еще на какую возможность. Свет и радиоволны, проходя через магнитное поле, должны порождать гравитационные волны. Причем эти волны имеют очень высокую частоту — ту же, что сами электромагнитные колебания, их породившие.
КПД превращения здесь значительно выше, чем в случае с механическими колебаниями. Например, энергия гравитационных волн, вызванных к жизни электромагнитным излучением звезд в межзвездных магнитных полях, должна быть меньше энергии электромагнитного излучения лишь в десять в шестнадцатой степени раз. Довольно «энергичны» должны быть и гравитационные волны, возбуждающиеся при проходе видимого и невидимого света через внутризвездное магнитное поле.
Во время термоядерных реакций в недрах звезд, в том числе и Солнца, постоянно возникает жесткое электромагнитное излучение. По дороге к поверхности звезды оно идет через ее магнитное поле — опять-таки появляются гравитационные волны.
То обстоятельство, что свет в магнитном поле может порождать гравитационные волны, открывает возможность создания их излучателя.
Тут появляется, в частности, — в очень далекой перспективе, конечно, — и возможность создания «гравитационного лазера». В обычных лазерах мы получаем очень узкие направленные пучки света. Гравитационные волны, порожденные таким лазером, тоже будут идти узким пучком. КПД превращения электромагнитных волн в гравитационные пропорционален квадрату напряженности магнитного поля и квадрату длины пути света в этом поле. Такая зависимость считается очень выгодной. Ведь каждый шаг вперед в усилении поля и увеличении его размеров дает эффект, возведенный в квадрат. Достаточно усилить напряженность поля в десять раз, и в сто раз большая доля энергии света перейдет в гравитационное излучение. А если при этом удастся в десять раз удлинить дорогу света через поле, то уже можно говорить в общей сложности о десятитысячекратном увеличении. Но десять тысяч — это только десять в четвертой степени. Немного рядом с величинами, характеризующими гравитационные волны.