Как это осуществить? Способов было предложено много. Можно сжимать воздух, хранить его в кавернах, например, под землей, а затем использовать механическую энергию движущихся воздушных потоков. Другой путь — гидроаккумулирующие устройства: вода закачивается в поднятый высоко резервуар, сброшенная оттуда, она возвращает энергию.

У нас в стране первый такой гидроаккумулирующий комплекс сооружается под Москвой, неподалеку от Загсрска. В двух километрах от устья небольшой речки Куиьи строится водоем, в котором весной будет собираться до 37 миллионов кубометров воды. А на отметке, находящейся на 100 метров выше, располагается другой бассейн почти такой же емкости. В ночное время насосные агрегаты будут из нижнего водоема перекачивать в верхний 22 миллиона кубометров воды. На это и уйдет излишек электричества.

Водохранилища соединены шестью водоводами диаметром 7,5 метра. Днем откроются их затворы, и мощные водопады устремятся к ГАЭС. В московскую городскую систему она передаст 1,2 миллиона киловатт электроэнергии. Столько же, сколько вырабатывается Саратовской ГЭС. А без ГАЭС излишек энергии пока приходится направлять (и получать) в другие отдаленные районы страны. При этом часть электроэнергии теряется в пути.

Проблему выравнивания энергии можно решать и другими способами, но, как правило, у них у всех один общий недостаток — большая инерционность процессов: ими трудно управлять. А электрохимические генераторы лишены этого недостатка. Только вот «маленькая» загвоздка — для выравнивания ритмов городской энергетики необходимы ЭЭС-гиганты: мощностью в десятки мегаватт. А их пока еще нет.

Да, таких электрохимических исполинов пока нет, но когда их начнут монтировать, это будет необычный процесс. Непривычный. ЭЭС можно, оказывается, собирать на специальных заводах. Так же, как, скажем, автомобили. (Автомобиль вовсе не обязательно собирать на дворе того дома, где он будет парковаться!) Строительство ТЭЦ требует места, и немалого, большого времени, капитальных вложений. Массовое же производство электрохимических «бутербродов», их быстрый монтаж в модули и «колонны» можно осуществить поточно. И доставить быстро в любую точку города. Соответственно и стоимость ЭЭС должна быть ниже.

Важность проблемы энергоснабжения городов быстро возрастает. По данным ООН, к концу века в городах будет жить вдвое больше людей, чем сейчас. В развитых странах на долю городов придется три четверти всего населения, в развивающихся странах — около половины. Причем города достигнут грандиозных, умопомрачительных размеров. В 2000 году список их будет, очевидно, возглавлять Мехико с населением 31 (!) миллион человек. Далее будут следовать Сан-Пауло (25,8 миллиона), Токио (24,2 миллиона), Нью-Йорк (22,8 миллиона), Шанхай (22,7 миллиона). Как следствие такой урбаакселерации резко пойдет вверх и необходимость в ЭЭС, этих легко откликающихся на потребу городов новых источников электроэнергии.

«Тарджет» и другие

Кто-то должен начать! Самая блестящая идея останется фантазией, пока за нее не возьмется инженер. И вот в последние годы за рубежом в различных журналах, связанных с энергетикой, техникой, замелькали непривычные, броские заголовки статей. «Использование топливных элементов для выработки электроэнергии — мечта или реальность?» «Топливные элементы — фаворит в энергетической скачке?»... И тому подобное. В условиях достаточно резко выраженного энергетического кризиса, экологических и прочих неурядиц в ведущих капиталистических странах — США, ФРГ, Японии — начаты серьезные исследования вопроса о возможной роли топливных элементов в Большой Энергетике. Особый размах эта деятельность получила в США.

В 1967 году, когда многие организации, занимающиеся топливными элементами и работающие на космос, начали свертывать свою деятельность и дух уныния воцарился над этой проблемой, американская фирма «Юнайтед технолоджи корпорейшн», объединившись с консорциумом газовых и электрических компаний (электроэнергия из газа), создала проект «Тарджет» («Цель»). Организаторы проекта, что называется, смотрели в корень. Природный газ становится в энергетике самой перспективной фигурой. Использовать его высокоэффективно, экологически чисто — то была достойная задача.

Проект «Тарджет» действует более 20 лет. Исследования велись с постепенным наращиванием мощности установок. В 1972—1973 годах было изготовлено более 60 модулей — 12,5 киловатт каждый. Теперь же взят курс на 40-киловаттные устройства. 50 таких станций пройдут испытания в период с 1979 по 1981 год, чтобы к 1982 году можно было выработать окончательные рекомендации по их практическому использованию. Конечная цель работ — создание предпосылок для использования газа в качестве единственного носителя энергии.

«Тарджет» не единственный проект такого рода. В 1971 году была принята другая программа — «РСО» (первые буквы слов «Fuel Cell Generator» — генераторы на топливных элементах).

Если проект «Тарджет» поддерживали в основном газовые компании, то программу РСО финансировали компании электрические. И цели тут покрупнее — построить в начале 80-х годов уже 27-мегаваттную (!) установку на топливных элементах.

В 1976—1977 годах была построена и успешно испытана станция мощностью в 1 мегаватт. А в мае 1980 года в густонаселенном районе Нью-Йорка (Нижний Манхаттан, это место выбрано, чтобы показать преимущества использования топливных элементов: бесшумность, бездымность, «безводность») начато испытание электростанции на топливных элементах мощностью в 4,8 мегаватта. Она дает ток в городскую сеть.

Если эксплуатация этой демонстрационной энергоустановки — пока идет очень дорогостоящий и сложный технический эксперимент! — окажется успешной (планируется, что станция проработает 2000 часов: в октябре 1981 года предполагается выпустить заключительный отчет по данному проекту), то в начале 80-х годов, возможно, будет построена электростанция уже на 27 мегаватт.

Согласно предварительным расчетам такая станция сможет обеспечить электроэнергией жилой массив (или город) с населением в 20 тысяч человек. Все оборудование такой ЭЭС может быть размещено в одноэтажном строении, занимающем порядка двух тысяч квадратных метров земли.

Чтобы ощутить размах дела, полезно вспомнить события не столь далекие: историю развития атомной энергетики. Первая в мире АЭС опытно-промышленного назначения мощностью в 5 мегаватт (какое совпадение: ЭЭС в Нью-Йорке рассчитана примерно на ту же мощность!) была пущена в СССР 27 июня 1954 года. А в 1958 году была введена в эксплуатацию 1-я очередь Сибирской АЭС мощностью 100 мегаватт (Мвт) — полная проектная мощность 600 Мвт. Так начиналась эра атомной энергетики. Не стоим ли мы сейчас на пороге энергетики электрохимической?

Третье поколение

Широкая река научно-технического прогресса. Ее стремительные повороты, странные и порой необъяснимые. Скажем, М. Фарадей (1791 —1867), так много сделавший для развития электрохимии. (Достаточно вспомнить открытые им законы электролиза.) Но он же в 1831 году открыл и принцип электромагнитной индукции. К чему это привело? К созданию электрических генераторов. К забвению электрохимических устройств, которые до этой поры (до 60-х годов XIX века) являлись основным источником электричества. Но сейчас, кажется, ситуация вновь меняется. Восстанавливается (увы, спустя примерно столетие) исходная позиция.

«Загнанные в резервации», «истребленные» для нужд Большой Энергетики, электрохимические устройства в образе топливных элементов собираются теперь дать бой тепловым машинам на их же собственной территории.

Третья американская долговременная программа «Utility» («Польза») поставила своей целью осуществить заветную мечту электрохимиков — поставить на промышленную основу, «холодное» (на топливных элементах) горение угля в кислороде воздуха. И не в виде лабораторных образчиков, дразнящих воображение, но не выдерживающих практической проверки. Где-то в 1990-х годах должна быть построена электростанция мощностью в 635 мегаватт!