Другой недостаток гальванических элементов — краткий срок их действия. В элемент заложен определенный запас активного материала — топлива и окислителя. Запас израсходован — и элемент выходит из строя, его надо заменять другим. Тепловые же машины работают без перебоев, топливо и окислитель к ним можно подводить непрерывно.
А что, если создать гальванический элемент, действующий по такому же принципу — с непрерывным подводом топлива и окислителя? Тогда новое устройство, обладая очень высоким коэффициентом полезного действия, значительно увеличит и срок службы. Это, собственно, и есть основная идея топливного элемента, преимущества которой еще в начале нашего века разглядели лучшие «электрохимические умы». В частности, В. Оствальд. Но, ярко вспыхнув, новая звезда энергетики быстро угасла. Причин было много, мы рассказывали о них в прошлой главе. Топливные элементы пошли в ход только тогда, когда разработка этих источников энергии стала составной частью космических программ. Нужны были большие средства и мощные научные и инженерные силы. Только на этом пути можно было надеяться на успех в этой трудной проблеме. Но пока топливные элементы были слишком дорогостоящими. И вот энтузиазм 60-х годов сменился в 70-х годах сначала осторожным оптимизмом, а затем и вовсе унынием и пессимизмом.
Да, топливные элементы известны давно. Но прежде, когда органическое топливо было баснословно дешевым, большая эффективность топливных элементов особой роли не играла. Однако то, что было дешево еще в 60-х годах, резко подорожало в 70-е! Энергетический кризис обновил взгляды. И идея топливного элемента вновь стала актуальной, ибо это был реальный путь экономии все дорожающей органики. Так топливные элементы получили «путевку» в большую энергетику.
Рожденный для города
«Приводят все дороги в Город» — так писал в конце прошлого века бельгийский поэт Эмиль Верхарн.
Города — средоточие нашей цивилизации. Ее барометр, пульс. Достижения и просчеты здесь особенно рельефны, обнажены.
Город — это «остров тепла». Средняя температура тут может быть на десять градусов выше, чем вне городской черты. Здесь иной воздух, не так светят солнечные лучи, чаще и обильнее выпадают дожди.
Деревья в городе — о, это целая проблема! Сильное загрязнение воздуха в Токио вынудило муниципальные власти принять программу «скорой помощи» зеленым насаждениям. Так, все деревья старше 15 лет должны быть зарегистрированы специальной службой. Это молодые «старцы», оказывается, уже требуют особого ухода.
Но в городе нелегко жить не только деревьям, но и людям. Полицейские в противогазах на улицах Токио, зловещие смоги над Лондоном и Лос-Анджелесом — об этом много писали. Как же совместить в городах экологическую чистоту и непрерывный рост энергопотребления? И вновь вспомнили про топливые элементы. Ведь у электрохимических генераторов есть и еще одно важное достоинство — экологическая чистота. Они выбрасывают в атмосферу почти исключительно углекислый газ и воду. Поэтому их можно использовать непосредственно там, где они нужнее всего, — в крупных городах и промышленных центрах.
Да, топливные элементы как бы рождены для города. Они бесшумны (химическая энергия здесь непосредственно преобразуется в электричество, минуя стадию, связанную с механическим движением). Далее, низкотемпературные топливные элементы практически не потребляют воды. Они занимают гораздо меньше места, нежели традиционные ТЭЦ. А в переуплотненных городах проблема территории крайне остра. Так вот: предварительные оценки показывают, что электростанция на топливных элементах мощностью в 20 мегаватт будет занимать участок размером лишь в 15X25 квадратных метров.
Причины компактности этих энергоустановок станут понятны, если мы представим себе, как они устроены.
При хрестоматийной подаче топливный элемент изображают так. В сосуд с водным раствором электролита (кислоты или щелочи) погружены два металлических, например, из платины, стержня — их называют электродами.
К одному из электродов (аноду) подводят газообразное топливо, скажем, водород, другой электрод (катод) омывается окислителем, обычно кислородом или воздухом (так дешевле). Если теперь электроды замкнуть на внешнюю цепь, в ней пойдет электрический ток.
Примерно в таких тонах расскажет о топливном элементе ученый-электрохимик. Технолог же, обуреваемый желанием сэкономить пространство и материал и жаждущий высоких удельных мощностей, представил бы топливный элемент по-иному.
Это сандвич, сказал бы он, где роль ломтей хлеба играют два пористых (внутренняя поверхность велика, велик и ток) электрода, а кружочка колбасы — пропитанная раствором электролита также пористая матрица (да, хотя б и промокашка, лишь бы тоненькой была!).
Но, добавит технолог, один такой электрохимический «бутерброд» энергией не насытит. Тут уже нужна стопка, этакий «слоеный пирог» из множества топливных элементов.
Толщина отдельного топливного элемента — миллиметры, снимаемая мощность — сотни ватт. Батарея же высотой в несколько метров (из многих сотен отдельных, повторяющихся, однотипных, правильно чередующихся топливных элементов) способна дать сотни киловатт энергии. Мегаватты же, если заводить речь об электрохимической энергетике всерьез, получатся, коль на сравнительно небольшой площадке взгромоздятся сотни таких слоеных электрохимических «колонн». Это и будет (как бы ее назвать?) электрохимической электростанцией (ЭЭС). Одна из многих ячеек электрохимической энергетики (ЭХЭ).
Важное достоинство этих источников энергии еще и в том, что в основе их построения лежит принцип «модульности». Стопка или набор топливных элементов — модуль — может быть любого размера, а стало быть, и мощности. Так сказать, на любой вкус и потребность!
В каждом доме можно поставить свою котельную, но никак не электростанцию! (Так же, как вряд ли в будущем появятся автомобили с атомным реактором.) Это если говорить о традиционных источниках энергии в городе. Не то ЭЭС. Сейчас создаются проекты небольших (от 25 до 200 киловатт) автономных электрохимических генераторов на природном газе (а он есть в каждой кухне!), которые бы обслуживали отдельные микрорайоны или даже большие жилые дома. При этом можно утилизировать еще и тепло, выделяемое топливными элементами. И при тех же затратах топлива не только снабжать дома электричеством, но и отапливать их.
Но можно строить ЭЭС и больших мощностей — от 5 до 25 мегаватт. Однако работа для них в городе будет уже иная. Ритмы города — «прилив», «отлив». Часы «пик» с толчеей в метро и автобусах. Как громадный зверь, город спит ночью (потребляя мало энергии), но утром, проснувшись, он выказывает всю свою силу (требуя всю доступную ему энергию).
Энергетика города вынуждена работать очень неравномерно и, как сейчас увидим, неэкономично. Эффективность использования топлива на ТЭЦ сильно зависит от нагрузки: если при работах на полную мощность такая ТЭЦ на жидком топливе потребляет около 2150 килокалорий на 1 киловатт-час электроэнергии, то при 40-процентной загрузке — уже 2800 килокалорий. А электрохимический генератор независимо от нагрузки будет потреблять 2270—2330 килокалорий на киловатт-час. (Еще одно замечательное свойство топливных элементов — сколько их мы уже перечислили!)
Нетрудно понять, какие можно получить выгоды, если использовать топливные элементы в коммунальном электроснабжении. В первую очередь как вспомогательные генераторы, подключаемые в часы пиковых нагрузок. Подстраиваясь под прихотливые ритмы городов, очень выгодной окажется комбинация из рассчитанной на средние нагрузки обычной ТЭЦ, постоянно работающей в оптимальном режиме, — на полную мощность, и батареи топливных элементов, принимающей на себя увеличение нагрузки в часы «пик».
Мысль о выравнивании нагрузок в больших энергетических системах: аккумулирование энергии при «спадах» и выдача ее в сеть при «подъемах» — мысль старая. Подсчитано, например, что создание таких аккумулирующих станций общей мощностью от 200 до 400 миллионов мегаватт сэкономило бы в год 50 миллионов тонн нефти!