Системы КС используются преимущественно в телеграфной связи и при передаче данных. Дополнительно к управляющим и коммутирующим устройствам в системах КС имеются устройства для накопления передаваемых сигналов. В процессе прохождения сигналов от передатчика к приемнику в системах КС осуществляются такие технологические операции с накапливаемыми сообщениями, как изменение порядка их следования к абонентам (с учётом возможных приоритетов, т. е. преимущественного права на передачу), приём сообщений по каналу одного типа (характеризующемуся одной скоростью передачи), а передача — по каналу другого типа (с др. скоростью) и ряд дополнительных операций в соответствии с заданным алгоритмом работы. В некоторых случаях могут создаваться комбинированные узлы КС и КК, позволяющие обеспечить наиболее благоприятные режимы передачи сообщений и использования сетей Э.
Для развития современных коммутационных станций и узлов характерны тенденции использования в коммутационных устройствах быстродействующих миниатюрных герметизированных контактов (например, герконов ) для реализации соединений, а для управления процессами соединений — специализированных ЭВМ. Коммутационные станции и узлы такого типа получили название квазиэлектронных. Введение ЭВМ позволяет предоставлять абонентам дополнительные услуги: возможность применения сокращённого (с меньшим кол-вом знаков) набора номеров наиболее часто вызываемых абонентов; установку аппаратов на «ожидание», если номер вызываемого абонента занят; переключение соединения с одного аппарата на другой и т. д. С внедрением систем передачи с временным разделением каналов намечается возможность перехода к чисто электронным (без механических контактов) станциям и узлам коммутации. В таких системах коммутируются непосредственно дискретные каналы (без преобразования дискретных сигналов в аналоговые). В результате происходит объединение (интеграция) процессов передачи и коммутации, что служит предпосылкой к созиданию интегральной сети связи, в которой сообщения всех видов передаются и коммутируются едиными методами. В СССР Э. развивается в рамках разработанной и планомерно внедряемой Единой автоматизированной сети связи (ЕЛСС). ЕАСС представляет собой комплекс технических средств связи, взаимодействующих посредством использования общей — «первичной» — сети каналов, на основе которой с помощью коммутационных станций и узлов и оконечных аппаратов создаются различные «вторичные» сети, обеспечивающие организацию Э. всех видов.
Лит.: Чистяков Н. И., Хлытчиев С. М., Малочинский О. М., Радиосвязь и вещание, 2 изд., М., 1968; Многоканальная связь, под ред. И. А. Аболица, М., 1971; Автоматическая коммутация и телефония, под ред. Г. Б. Метельского, ч. 1—2, М., 1968—69; Емельянов Г. А., Шварцман В. О., Передача дискретной информации и основы телеграфии, М., 1973; Румпф К. Г., Барабаны, телефон, транзисторы, пер. с нем., М., 1974; Лившиц Б. С., Мамонтова Н. П., Развитие систем автоматической коммутации каналов, М., 1976: Давыдов Г. Б., Рогинекий В. Н., Толчан А. Я., Сети электросвязи, М., 1977; Давыдов Г. Б., Электросвязь и научно-технический прогресс, М., 1978.
Г. Б. Давыдов.
Рис. 1. Структурная схема одного из возможных способов сочетания аналогового и дискретного методов передачи электрических сигналов: АОА - оконечный аппарат аналогового типа; ДОА - оконечный аппарат дискретного типа; АДП - аналого-дискретный (цифровой) преобразователь; ДАП - дискретно(цифро)-аналоговый преобразователь: пунктирными линиями показан путь дискретных сигналов, сплошными - аналоговых сигналов.
Рис. 3. Осциллограммы, поясняющие принцип дельта-модуляции: а — передаваемый аналоговый сигнал (плавная линия) и результат его квантования по уровню (ступенчатая линия); б — последовательность импульсов, отображающая ход ступенчатой функции; в — восстановленный сигнал (пунктирными линиями указаны границы разброса его мгновенных значений, обусловленного шумами квантования).
Рис. 2. Осциллограммы, поясняющие принцип импульсно-кодовой модуляции: а — передаваемый аналоговый сигнал, который преобразуется в последовательность импульсных сигналов (показаны штриховкой); б — кодовые сигналы, несущие информацию о величине импульсных сигналов (показанных пунктиром); в — импульсы, восстановленные из кодовых сигналов на приёмном конце; г — восстановленный исходный аналоговый сигнал (пунктирными линиями указаны границы разброса его мгновенных значений, обусловленного шумами «квантования»); t — время.
Рис. 4. Структурная схема коммутационной станции (узла): ЛК - линейные комплекты для сопряжения каналов и устройств управления; M1, М2, ...Мn, N1, N2, ...Nn - каналы или абонентские линии; СК- станционные комплекты для обеспечения функционирования оконечных аппаратов (питание микрофонов, посылка адресной информации и др.): ШК - шнуровые комплекты.
«Электросвязь»
«Электросвя'зь», ежемесячный научно-технический журнал, орган министерства связи СССР и научно-технического общества радиотехники, электроники и связи им. А. С. Попова. Издаётся в Москве с 1933 (до 1938 выходил под названием «Научно-технический сборник по электросвязи»). Основные вопросы, освещаемые в журнале: радиосвязь, телефония, телеграфия и фототелеграфия, передача данных, телевидение, радиовещание, проводное вещание; многоканальная связь; автоматическая коммутация; аппаратура и оборудование систем связи; вопросы теории распространения электромагнитных колебаний, теории электрических цепей, теории информации и др. Тираж (1978) около 10 тыс. экз.
«Электросила»
«Электроси'ла», см. Ленинградское электромашиностроительное объединение «Электросила» .
Электросинтез
Электроси'нтез (от электро... и синтез ), метод получения сложных неорганических или органических соединений с помощью электролиза . Характерная особенность Э. — многостадийность присоединения или отдачи электронов, связанная с образованием промежуточных стабильных или нестабильных продуктов. Каждой стадии Э. соответствует определённое значение электродного потенциала .
Многостадийные процессы Э. могут быть выражены с помощью следующих уравнений:
R + nH + + ne— ® RHk + (n — k ) Н+ + (n — k ) e— ® RHk+r + (n— k— r ) Н+ + (n — k — r ) е — ® RHn , (1)
R' + nOH — — ne— ® R'Ok + (n — k ) OH— + k H+ + (n — k ) е— ® R'Ok+r + (n — k — r ) OH- + (k + r) H+ — (n — k — r ) e — ® R'On + nH + , (2)
где R и R' — исходные продукты; RHn и R'On — конечные продукты; n, k, r — число электронов (е — ), участвующих в электрохимических реакциях.
Реакции, выражаемые уравнением (1), протекают на катоде и называются реакциями электровосстановления, или электрохимического восстановления. Реакции, выражаемые уравнением (2), протекают на аноде и называются реакциями электроокисления, или электрохимического окисления. Промежуточные и конечные продукты могут принимать участие в различных электрохимических реакциях на поверхности электродов.