Изменить стиль страницы

  Э. т. развивались в тесной связи как с классической химического строения теорией, так и с квантовой химией, являющейся основой всех современных электронных теорий.

  Лит. см. при статьях Органическая химия , Химического строения теория , Валентность . Химическая связь .

Электронные часы

Электро'нные часы', часы , в которых источником периодических колебаний обычно служит кварцевый генератор , а отсчёт времени производится по цифровому индикаторному устройству (на жидких кристаллах, светодиодах и т. д.). Преобразование периодических колебаний в дискретные сигналы, управляющие цифровым индикатором, осуществляется электронным устройством, выполненным на интегральных микросхемах (например, в наручных Э. ч.) или полупроводниковых приборах (например, в настольных Э. ч.).

Электронный захват

Электро'нный захва'т, вид радиоактивного распада ядер, при котором ядро захватывает электрон с одной из внутренних оболочек атома (К, L, М и др.) и одновременно испускает нейтрино . При этом ядро с массовым числом A и атомным номером Z превращается в ядро с тем же A и Z меньше на 1: Az + е ® Az-1 + n. Образовавшуюся вакансию в электронной оболочке атома заполняют электроны с других оболочек, в результате чего испускается квант характеристического рентгеновского излучения атома Az-1 или соответствующий электрон (Оже-электрон). Э. з. возможен, если масса (в единицах энергии) атома Az больше массы атома Az-1 на величину, большую энергии связи захватываемого электрона. Если это превышение больше, чем 2 mc2 = 1,02 Мэв (m — масса покоя электрона, с — скорость света), то с Э. з. начинает конкурировать b+ -распад (см. Радиоактивность ).

Электронный микроскоп

Электро'нный микроско'п, прибор для наблюдения и фотографирования многократно (до 106 раз) увеличенного изображения объектов, в котором вместо световых лучей используются пучки электронов, ускоренных до больших энергий (30—100 кэв и более) в условиях глубокого вакуума. Физические основы корпускулярно-лучевых оптических приборов были заложены в 1834 (почти за сто лет до появления Э. м.) У. Р. Гамильтоном , установившим существование аналогии между прохождением световых лучей в оптически неоднородных средах и траекториями частиц в силовых полях. Целесообразность создания Э. м. стала очевидной после выдвижения в 1924 гипотезы о волнах де Бройля , а технические предпосылки были созданы немецким физиком X. Бушем, который исследовал фокусирующие свойства осесимметричных полей и разработал магнитную электронную линзу (1926). В 1928 немецкие учёные М. Кнолль и Э. Руска приступили к созданию первого магнитного просвечивающего Э. м. (ПЭМ) и спустя три года получили изображение объекта, сформированное пучками электронов. В последующие годы (М. фон Арденне, Германия, 1938; В. К. Зворыкин , США, 1942) были построены первые растровые Э. м. (РЭМ), работающие по принципу сканирования (развёртывания), т. е. последовательного от точки к точке перемещения тонкого электронного пучка (зонда) по объекту. К середине 1960-х гг. РЭМ достигли высокого технического совершенства, и с этого времени началось их широкое применение в научных исследованиях. ПЭМ обладают самой высокой разрешающей способностью (PC), превосходя по этому параметру световые микроскопы в несколько тыс. раз. Т. н. предел разрешения, характеризующий способность прибора отобразить раздельно мелкие максимально близко расположенные детали объекта, у ПЭМ составляет 2—3

Большая Советская Энциклопедия (ЭЛ) i-images-143488604.png
. При благоприятных условиях можно сфотографировать отдельные тяжёлые атомы. При фотографировании периодических структур, таких как атомные плоскости решёток кристаллов, удаётся реализовать разрешение менее 1
Большая Советская Энциклопедия (ЭЛ) i-images-144289003.png
. Столь высокие разрешения достигаются благодаря чрезвычайно малой длине волны де Бройля электронов (см. Дифракция частиц ). Оптимальным диафрагмированием [см. Диафрагма в электронной (и ионной) оптике] удаётся снизить сферическую аберрацию объектива (влияющую на PC Э. м.) при достаточно малой дифракционной ошибке. Эффективных методов коррекции аберраций в Э. м. (см. Электронная и ионная оптика ) не найдено. Поэтому в ПЭМ магнитные электронные линзы (ЭЛ), обладающие меньшими аберрациями, полностью вытеснили электростатические ЭЛ. Выпускаются ПЭМ различного назначения. Их молено разделить на 3 группы: Э. м. высокого разрешения, упрощённые ПЭМ и Э. м. с повышенным ускоряющим напряжением.

  ПЭМ с высокой разрешающей способностью (2—3 Å) — как правило, универсальные приборы многоцелевого назначения. С помощью дополнительных устройств и приставок в них можно наклонять объект в разных плоскостях на большие углы к оптической оси, нагревать, охлаждать, деформировать его, осуществлять рентгеновский структурный анализ , исследования методами электронографии и пр. Ускоряющее электроны напряжение достигает 100—125 кв, регулируется ступенеобразно и отличается высокой стабильностью: за 1—3 мин оно изменяется не более чем на 1—2 миллионные доли от исходного значения. Изображение типичного ПЭМ описываемого типа приведено на рис. 1 . В его оптической системе (колонне) с помощью специальной вакуумной системы создаётся глубокий вакуум (давление до 10—6 мм рт. ст. ). Схема оптической системы ПЭМ изображена на рис. 2 . Пучок электронов, источником которых служит накалённый катод, (формируется в электронной пушке и затем дважды фокусируется первым и вторым конденсорами, создающими на объекте электронное «пятно» малых размеров (при регулировке диаметр пятна может меняться от 1 до 20 мкм ). После прохождения сквозь объект часть электронов рассеивается и задерживается апертурной диафрагмой. Нерассеянные электроны проходят через отверстие диафрагмы и фокусируются объективом в предметной плоскости промежуточной линзы. Здесь формируется первое увеличенное изображение. Последующие линзы создают второе, третье и т. д. изображения. Последняя проекционная линза формирует изображение на флуоресцирующем экране, который светится под воздействием электронов. Увеличение Э. м. равно произведению увеличений всех линз. Степень и характер рассеяния электронов неодинаковы в различных точках объекта, т. к. толщина, плотность и химический состав объекта меняются от точки к точке. Соответственно изменяется число электронов, задержанных апертурной диафрагмой после прохождения различных точек объекта, а следовательно, и плотность тока на изображении, которая преобразуется в световой контраст на экране. Под экраном располагается магазин с фотопластинками. При фотографировании экран убирается, и электроны воздействуют на фотоэмульсионный слой. Изображение фокусируется плавным изменением тока, возбуждающего магнитное поле объектива. Токи др. линз регулируют для изменения увеличения Э. м.