Изменить стиль страницы

Большая Советская Энциклопедия (ЭЛ) i-images-122607507.png

— полный нормальный эллиптический интеграл 1-го рода и 4K — основной период Э. ф. sn z. В отличие от однопериодической функции sin х, функция sn z — двоякопериодическая. Её второй основной период равен 2iK, где

Большая Советская Энциклопедия (ЭЛ) i-images-100470078.png

  и

Большая Советская Энциклопедия (ЭЛ) i-images-174876536.png
 — дополнительный модуль. Периоды, нули и полюсы Э. ф. Якоби приведены в таблице, где m и n — любые целые числа.

Функции Периоды Нули Полюсы
zKmiK'nmKiK'n mKniK'
zK KiK'nmKiK'n
zKmiK'nmKn iK

  Э. ф. Вейерштрасса Ã(х ) может быть определена как обратная нормальному эллиптическому интегралу Вейерштрасса 1-го рода

Большая Советская Энциклопедия (ЭЛ) i-images-198218175.png

  где параметры g 2 и g 2 — называются инвариантами Ã(x ). При этом предполагается, что нули e 1 , e 2 и e 3 многочлена 4t 3g 2 t — g 3 различны между собой (в противном случае интеграл (*) выражался бы через элементарные функции). Э. ф. Вейерштрасса Ã(х ) связана с Э. ф. Якоби следующими соотношениями:

Большая Советская Энциклопедия (ЭЛ) i-images-104839499.png
,

Большая Советская Энциклопедия (ЭЛ) i-images-171328252.png
,

Большая Советская Энциклопедия (ЭЛ) i-images-184275483.png
.

  Любая мероморфная двоякопериодическая функция f (z ) с периодами w1 и w2 , отношение которых мнимо, т. е. f (z + m w1 + п w2 ) = f (z ) при m , n = 0, ± 1, ±2,... и

Большая Советская Энциклопедия (ЭЛ) i-images-156414357.png
, является Э. ф. Для построения Э. ф., а также численных расчётов применяют сигма-функции и тэта-функции .

  Изучению Э. ф. предшествовало накопление знаний об эллиптических интегралах, систематическое изложение теории которых дал А. Лежандр . Основоположниками теории Э. ф. являются Н. Абель (1827) и К. Якоби (1829). Последний дал развёрнутое изложение теории Э. ф., названное его именем. В 1847 Ж. Лиувилль опубликовал изложение основ общей теории Э. ф., рассматриваемых как мероморфные двоякопериодические функции. Представление Э. ф. через Ã-функцию, а также z-, s-функции дано К. Вейерштрассом в 40-х гг. 19 в. (две последние не являются Э. ф.).

  Лит.: Маркушевич А. И., Теория аналитических функций, 2 изд., т. 2, М., 1968; Гурвиц А., Курант Р., Теория функций, пер. с нем., М., 1968; Уиттекер Э, Т., Ватсон Дж. Н., Курс современного анализа, пер. с англ., 2 изд., ч. 2, М., 1963; Бейтмен Г., Эрдейи А., Высшие трансцендентные функции. Эллиптические и автоморфные функции. Функции Ламе и Матье, пер. с англ., М., 1967.

Большая Советская Энциклопедия (ЭЛ) i010-001-257990427.jpg

Рис. к ст. Эллиптические функции.

Эллиптический параболоид

Эллипти'ческий параболо'ид, один из двух видов параболоидов .

Эллиптический цилиндр

Эллипти'ческий цили'ндр, линейчатая цилиндрическая поверхность, уравнение которой может быть приведено к виду x 2 /a 2 + y 2 b 2 = 1. См. Поверхности второго порядка .

Эллис (атоллы)

Э'ллис (Ellice) (с 1975 — Тувалу; Tuvalu), группа атоллов на З. Тихого океана, в Полинезии. Владение Великобритании. Площадь 24 км 2 . Население 5,8 тыс. человек (1973). Состоит из 9 низменных коралловых атоллов, вытянутых на 600 км. Плантации кокосовой пальмы, бананов. Экспорт копры. Административный центр — г. Фунафути.

Эллис Фред

Э'ллис (Ellis) Фред (5.6. 1886, Чикаго, — 10. 6. 1965, Нью-Йорк), американский график-карикатурист. С 1924 член компартии США. Учился в художественной школе в Чикаго (1905), с 1927 главный художник «Дейли уоркер», в 1930—36 работал в СССР для газет «Правда» и «Труд». В ясных, широких и живописных по манере рисунках Э. нашли страстное и лаконичное выражение темы обличения капитализма, призыв к борьбе рабочего класса, гневное осуждение фашизма.

  Лит.: Дурус А., Фред Эллис, М. — Л., 1937; Выгодская Т., Фред Эллис, «Искусство», 1964, № 11.

Большая Советская Энциклопедия (ЭЛ) i010-001-246267706.jpg

Ф. Эллис. «Не беспокойтесь, здесь только коммунисты». Рисунок. 1934.

Эллора

Элло'ра, Эллур, Элура, деревня в Индии, в 15 км от Аурангабада (штат Махараштра), близ которой — группа из 34 высеченных в скале буддийских, брахманских и джайнских храмов (все — между 6—13 вв.), в том числе монолитный храм Кайласанатха, стилобат одной из трёх частей которого опоясан изваяниями слонов в натуральную величину.

Элляй

Элля'й (литературное имя; настоящее имя и фамилия Серафим Романович Кулачиков) [16(29). 11. 1904, Нижнеамгинский наслег Ботурусского улуса, ныне Алексеевского района Якутской АССР, — 14. 12. 1976, Якутск], якутский советский поэт. Народный поэт Якутской АССР (1964). Член КПСС с 1946. В 1928 окончил Московский институт журналистики. Участник Великой Отечественной войны 1941—45. Автор сборников стихов и поэм «Красные песни» (1925), «Счастливая жизнь» (1938), «Песни победы» (1950), «Негаснущий огонь» (1969), «Сердце друга» (1973) и др. Новизна формы, самобытность, гражданский пафос стихов Э. обусловили влияние его творчества на развитие якутской поэзии. Перевёл произведения А. С. Пушкина, Т. Г. Шевченко, В. В. Маяковского и др. Награжден орденом Октябрьской Революции, 2 другими орденами, а также медалями.

  Соч.: Талыллыбыт айымньылар, т. 1—2, Якутскай, 1964—65; Талыллыбыт айымньылар, т. 1—2, Якутскай, 1974; в рус. пер. — Мой хомус, М., 1974.

  Лит.: Очерк истории якутской советской литературы, М., 1970.