После захвата нейтрона ядро переходит в высоковозбужденное состояние, ниже которого обычно расположено множество др. состояний. Его распад с испусканием g-квантов может происходить многими путями через различные промежуточные уровни. Это приводит к тому, что полная радиационная ширина Гg - для каждого резонанса является усреднённой по большому числу путей распада, а следовательно, мало изменяется от резонанса к резонансу и плавно меняется от ядра к ядру. Обычно полная радиационная ширина при переходе от средних ядер (A » 50) к тяжёлым (А » 250) изменяется примерно от 0,5 эв до 0,02 эв. В то же время радиационные ширины, характеризующие вероятность g-перехода на данный промежуточный уровень, сильно флуктуируют от резонанса к резонансу, как и нейтронные ширины. Спектр g-лучей распада нейтронных резонансов даёт информацию о распадающемся состоянии (спин, чёткость, набор парциальных ширин). Кроме того, энергии отдельных g-переходов позволяют определить энергии нижележащих уровней, а интенсивности g-переходов — спин и чётность, иногда и природу уровня.
Делительные ширины Гд также заметно флуктуируют от резонанса к резонансу. Помимо осколков, при делении ядер под действием нейтронов испускаются g-кванты и вторичные нейтроны. Число нейтронов составляет 2—3 на 1 акт деления и практически не меняется от резонанса к резонансу. Эта величина, а также отношение вероятностей радиационного захвата и деления играют важную роль при конструировании ядерных реакторов.
У полутора десятков ядер обнаружено испускание a-частиц после захвата медленных нейтронов. Для лёгких ядер (В, Li) этот процесс является преобладающим. В средних и тяжёлых ядрах он затруднён кулоновским барьером ядра. Здесь в наиболее благоприятных случаях Гa в 104 — 109 раз меньше Г g . Н. с. даёт в этом случае информацию о высоковозбуждённых состояниях ядер, о механизме a-распада.
Данные Н. с. важны не только для ядерной физики. Реакторостроение нуждается в точных сведениях о взаимодействии нейтронов с делящимися материалами, а также материалами конструкции и защиты реакторов. Данные Н. с. используются для определения элементного и изотопного состава образцов без их разрушения (см. Активационный анализ ). В астрофизике они необходимы для понимания распространённости элементов во Вселенной.
Методы Н. с. нашли широкое применение в исследованиях структуры твёрдых тел и жидкостей, а также динамики различных процессов, например колебаний кристаллической решётки (см. Нейтронография ).
Лит.: Юз Дж. Д., Нейтронные эффективные сечения, пер. с англ., М., 1959; Рей Е. Р., Экспериментальная нейтронная спектроскопия, «Проблемы физики элементарных частиц и атомного ядра», 1971, т. 2, в. 4, с. 861; Франк И. М., Развитие и применение в научных исследованиях импульсного реактора ИБР, там же, с. 805; Боллингер Л. М., Гамма-кванты при захвате нейтронов, там же, с. 885; Попов Ю. П., (N, a) — реакция — новый канал для изучения природы нейтронных резонансов, там же, с. 925; Физика быстрых нейтронов, под ред. Дж. Мариона. и Дж. Фаулера, пер. с англ., т. 2, М., 1966.
Л. Б. Пикельнер, Ю. П. Попов.
Рис. 1. Зависимость суммарного эффективного сечения s поглощения и рассеяния нейтронов от их энергии Е .
Рис. 2. Схемы нейтронных спектрометров: а — с моноэнергетическим источником И, б — с кристаллическим монохроматором на канале ядерного реактора; Д — нейтронный детектор; М — поглощающая или рассеивающая мишень; К — коллиматор.
Нейтронные детекторы
Нейтро'нные дете'кторы, приборы для регистрации нейтронов. Действие Н. д. основано на регистрации вторичных частиц, образующихся в результате взаимодействия нейтронов с атомными ядрами. Для регистрации медленных нейтронов используются ядерные реакции расщепления лёгких ядер под действием нейтронов [10 В (n, a) 7 Li, 6 Li (n, a) 3 H и 3 He (n, p)1 H] с регистрацией a-частиц и протонов; деления тяжёлых ядер с регистрацией осколков деления (см. Ядра атомного деление ); радиационный захват нейтронов ядрами (n, g) с регистрацией g-квантов, а также возбуждения искусственной радиоактивности. Для регистрации a-частиц, протонов и осколков деления применяются ионизационные камеры и пропорциональные счётчики , которые заполняют газообразным BF3 и др. газами, содержащими В или 3 H, либо покрывают их стенки тонким слоем твёрдых В, Li или делящихся веществ. Конструкция и размеры таких камер и счётчиков разнообразны. Пропорциональные счётчики могут достигать 50 мм в диаметре и 2 м длины (СНМ-15). Наибольшей эффективностью к тепловым нейтронам обладают Н. д., содержащие 10 B или 3 He. Для регистрации медленных нейтронов используются также сцинтилляционные счётчики (на кристаллах Lil с примесью Eu, на сцинтиллирующих литиевых стеклах, либо смеси борсодержащих веществ и сцинтиллятора ZnS). Эффективность регистрации тепловых нейтронов в этом случае может достигать 40—60%. В Объединённом институте ядерных исследований создан сцинтилляционный Н. д., в котором регистрируются акты радиационного захвата. Он предназначен для нейтронов с энергией до 10 кэв и имеет эффективность — 20—40%.
Эффективность регистрации быстрых нейтронов перечисленными детекторами в сотни раз меньше, поэтому быстрые нейтроны предварительно замедляют в парафиновом блоке, окружающем Н. д. (см. Замедление нейтронов ). Специально подобранные форма и размеры блоков позволяют получить практически постоянную эффективность регистрации нейтронов в диапазоне энергии от нескольких кэв до 20 Мэв (всеволновой счётчик). При непосредственном детектировании нейтронов с энергиями ~ 100 кэв обычно используется упругое рассеяние нейтронов в водороде или гелии или регистрируются ядра отдачи. Так как энергия последних зависит от энергии нейтронов, то такие Н. д. позволяют измерять энергетический спектр нейтронов. Сцинтилляционные Н. д. также могут регистрировать быстрые нейтроны по протонам отдачи в органических и водородсодержащих жидких сцинтилляторах. Некоторые тяжёлые ядра, например 238 U и 232 Th, делятся только под действием быстрых нейтронов. Это позволяет создавать пороговые Н. д., служащие для регистрации быстрых нейтронов на фоне тепловых.
Для регистрации продуктов ядерных реакций нейтронов с ядрами В и Li, протонов отдачи и осколков деления используются также ядерные фотографические эмульсии . Этот метод особенно удобен в дозиметрии , так как позволяет определить суммарное число нейтронов за время облучения. При делении ядер энергия осколков столь велика, что они производят заметные механические разрушения. На этом основан один из способов их обнаружения: осколки деления замедляются в стекле, которое затем травится плавиковой кислотой; в результате следы осколков можно наблюдать под микроскопом.
Возбуждение искусственной радиоактивности под действием нейтронов используется для регистрации нейтронов, особенно при измерениях плотности потока нейтронов, так как число распадов (активность) пропорционально потоку нейтронов, прошедшему через вещество (измерение активности можно производить после прекращения облучения нейтронами). Существует большое количество различных изотопов, применяемых в качестве радиоактивных индикаторов нейтронов разных энергий E. В тепловой области энергий наибольшее распространение имеют 55 Mn, 107 Ag, 197 Au: для регистрации резонансных нейтронов применяют 55 Mn (E = 300 эв ), 59 Co (E =100 эв), 103 Rh, 115 In (E = 1,5 эв ), 127 I (E = 35 эв ), 107 Ag, 197 Au (E = 5 эв ). В области больших энергий используют пороговые детекторы 12 C (E = 20 Мэв ), 32 S (E = 0,9 Мэв ) и 63 Cu (E = 10 Мэв ) (см. Нейтронная спектроскопия ).