Флаг государственный. Непал.
Ступа Бодхнатх близ Катманду. 8—9 вв.
Непал. Завод сельскохозяйственных машин в г. Биргандж.
Непал. Террасированные склоны гор в районе Катманду.
Резное обрамление окна дома в Патане. Дерево. 15 в.
Непальский язык
Непа'льский язы'к, непали, гуркхали, кхас-кура, язык непальцев , государственный язык Непала, распространён также в Индии (г. Дарджилинг и некоторые др. районы штата Ассам; в северо-западных районах), Сиккиме и Бутане. Число говорящих на Н. я. — свыше 7 млн. чел. (в Непале — свыше 6 млн. чел., 1971, перепись; в Индии — свыше 800 тыс. чел.). Относится к индоарийской ветви индоевропейской семьи языков. Распадается на 4 диалекта: центральный, или стандартный; восточный Непали; западный Непали; диалект предгорий Гималаев. Фонологические особенности: наличие долгих и кратких гласных, противопоставление чистым (не назализованным) гласным назализованных; наличие ретрофлексных согласных. Строй Н. я. — аналитико-синтетический с преобладанием аналитизма. Основу лексики составляют слова, восходящие к санскриту. Грамматические особенности: род существительных — мужской и женский. К мужскому роду также относятся неодушевлённые предметы; 2 типа падежных форм — номинативный и послеложный. Наличие эргативно-послеложного подлежащего. В глаголе — синтетические и аналитические неличные формы, 5 наклонений (желательное, предположительное, ирреальное и др.). Употребление сочетаний глагольных форм для выражения интенсивности, длительности действия и т.д. В сложных предложениях придаточная часть предшествует главной. Н. я. пользуется шрифтом деванагари, или нагари (см. Индийское письмо ). Первый письменный памятник — 1337. Литературный язык на базе центрального диалекта развивается с начала 19 в.
Лит.: Зограф Г. А., Языки Индии, Пакистана, Цейлона и Непала, М., 1960; Королев Н. И., Язык Непала, М., 1965 (есть лит.): Непальско-русский словарь, М., 1968, с. 1211—1328; Srivastaya Dayanand, Nepali language, its history and development, Calcutta, 1962; Turner R. L., A comparative and etymological dictionary of the Nepali language, N. Y., 1966.
Н. И. Королев.
Непальцы
Непа'льцы, непали,
1) название всех граждан Непала.
2) Самоназвание, распространившееся среди народов Непала, вошедших в конфедерацию гуркхов и постепенно консолидировавшихся в единый народ, ныне составляющий около половины населения страны. Говорят на непальском языке . (Об истории, хозяйстве и культуре Н. см. в ст. Непал . )
Непараметрические методы
Непараметри'ческие ме'тоды в математической статистике, методы непосредственной оценки теоретического распределения вероятностей и тех или иных его общих свойств (симметрии и т.п.) по результатам наблюдений. Название Н. м. подчёркивает их отличие от классических (параметрических) методов, в которых предполагается, что неизвестное теоретическое распределение принадлежит какому-либо семейству, зависящему от конечного числа параметров (например, семейству нормальных распределений ), и которые позволяют по результатам наблюдений оценивать неизвестные значения этих параметров и проверять те или иные гипотезы относительно их значений. Разработка Н. м. является в значительной степени заслугой советских учёных.
В качестве примера Н. м. можно привести найденный А. Н. Колмогоровым способ проверки согласованности теоретических и эмпирических распределений (так называемый критерий Колмогорова). Пусть результаты n независимых наблюдений некоторой величины имеют функцию распределения F (x ) и пусть Fn (x ) обозначает эмпирическую функцию распределения (см. Вариационный ряд ), построенную по этим n наблюдениям, a Dn — наибольшее по абсолютной величине значение разности Fn (x ) — F (x ). Случайная величина
имеет в случае непрерывности F (x ) функцию распределения Kn (l), не зависящую от F (x ) и стремящуюся при безграничном возрастании n к пределу
Отсюда при достаточно больших n, для вероятности pn , l . Неравенства
получается приближённое выражение
pn, l » 1 - К (l). (*)
Функция К (l) табулирована. Её значения для некоторых А приведены в табл.
Таблица функции К (l)
l | 0,57 | 0,71 | 0,83 | 1,02 | 1,36 | 1,63 |
К | 0,10 | 0,30 | 0,50 | 0,75 | 0,95 | 0,99 |
Равенство (*) следующим образом используется для проверки гипотезы о том, что наблюдаемая случайная величина имеет функцию распределения F (x ): сначала по результатам наблюдений находят значение величины Dn , а затем по формуле (*) вычисляют вероятность получения отклонения Fn от F, большего или равного наблюдённому. Если указанная вероятность достаточно мала, то в соответствии с общими принципами проверки статистических гипотез (см. Статистическая проверка гипотез ) проверяемую гипотезу отвергают. В противном случае считают, что результаты опыта не противоречат проверяемой гипотезе. Аналогично проверяется гипотеза о том, получены ли две независимые выборки, объёма n1 и n2 соответственно, из одной и той же генеральной совокупности с непрерывным законом распределения. При этом вместо формулы (*) пользуются тем, что вероятность неравенства
как это было установлено Н. В. Смирновым , имеет пределом К (l), здесь Dn1 , n2 есть наибольшее по абсолютной величине значение разности Fn1 (х ) — Fn2 (х ).
Другим примером Н. м. могут служить методы проверки гипотезы о том, что теоретическое распределение принадлежит к семейству нормальных распределений. Отметим здесь лишь один из этих методов — так называемый метод выпрямленной диаграммы. Этот метод основывается на следующем замечании. Если случайная величина Х имеет нормальное распределение с параметрами a и s, то
где Ф-1 — функция, обратная нормальной:
Т. о., график функции у = Ф-1 [F (x )] будет в этом случае прямой линией, а график функции у = Ф-1 [Fn (x)] — ломаной линией, близкой к этой прямой (см. рис. ). Степень близости и служит критерием для проверки гипотезы нормальности распределения F (x ).